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Abstract

A packet radio network is a collection of geographically distributed packet radio units
communicating over a shared broadcast channel. Usually not all radio units are within
hearing range of each other, and thus multihop operation is required. These networks rep-
resent the natural extension of point-to-point packet-switched data networks when mobile
operation is desired. An important difference exists, however, with respect to the latter:
due to the multiaccess nature of the radio channel, the success of a packet at a destination
depends on the activity, during the transmission of the packet, of the neighbors of the
destination, and on system parameters such as the type of signaling and received power
levels. The conditions under which a packet is successfully received in the presence of
interfering packets are designated as the capture mode. Due to the existence of multiuser
interference, some form of coordination among the users is required when accessing the
channel. This purpose is accomplished by the channel access protocol. ' c /

This thesis deals with the problem of the capacity analysis of a multihop packet radio
network; namely, given a network specified by its topology, traffic pattern, channel access
protocol, and capture mode, finding the maximum feasible link traffics compatible with the
given traffic pattern. In this thesis we start by examining the capture behavior obtained
from different signaling methods, and the question of the feasibility of implementation of
different protocols under different signaling methods. The signaling schemes that form
the basis of the discussion are narrowband and direct-sequence spread-spectrum. We then
formulate a Markovian model that, through the appropriate setting of its parameters,
allows the representation of the capture behavior of the different signaling methods, and
the representation of the actions of the protocols in a general class that includes some of the
main protocols of interest for packet radio applications. Examples of protocols in this class
ar! Carrier Sense Multiple Access (CSMA), Busy Tone protocols, Disciplined-ALOHA,
and ALOHA. From this model we derive thrnugbput measures, and devc!op algorithnis %r
finiding the network capacity under a given traffic pattern. We then apply the analytical
framework developed to the study of the relative performance of a number of channel access
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Chapter 1

INTRODUCTION

1.1 Packet Radio Networks: Overview

A packet radio network (PRN) consists of a collection of geographically dis-

tributed packet radio units (PRU's), communicating over a radio channel using

packet switching techniques. In general not all PRU's are within radio hearing

range of each other, and thus multihop store-and-forward operation is required.

Packet radio networks combine the multihop nature of point-to-point store-and-

forward networks with the multiaccess nature of broadcast networks such as some

of those employed in local area packet communication.

Packet radio networks represent the natural evolution of point-to-point packet-

switched data networks when mobile operation is desired, or when good wireline

data links are not available. It is the latter reason that motivated the construc-

tion of the first operating packet radio network, the ALOHA system [Abra70]. The

ALOHA system was a centralized system, in which a population of users sent pack-

ets to, and received packets from, a central station, with separate frequencies for



the inbound and outbound traffic. All traffic between any two users was routed

through the central station. At the time the ALOHA system was developed, it

was not technologically feasible to put into a unit small enough to be of practical

interest for mobile operation, and in a cost-effective manner, the computing power

needed for the processing and management functions required by packet-switched

store-and-forward operation. It was during the 1970's that the advances achieved

in the area of VLSI design and fabrication, in particular the development of mi-

crocomputers, allowed that goal to be attained. During this decade, the Defense

Advanced Research Projects Agency (DARPA) of the Department of Defense of the

United States initiated a research program whose purpose was to show the feasi-

bility of the packet radio concept for mobile operation. An excellent overview of

the organization and structure of the packet radio network contemplated in this

program, as well as the goals of the program, can be found in [Kahn78].

The basic building block of a packet radio network is the PRU. Each PRU

consists essentially of a radio section and of a digital section. The radio section

contains the antenna, a transmit /receive switch, one transmitter, and one receiver

([Kahn78], [Fral75]). The digital section contains the elements necessary for per-

forming the storing and routing of incoming packets, as well as controlling the

operating parameters of the receiver and transmitter (Figure 1.1). Typically all

communication in the network takes place using a single radio channel, in which

case the operation of the transmitter and of the receiver is mutually exclusive.

Each PRU will in general act both as a repeater for transit packets, and as a

local source and sink of digital information. Upon reception of a packet of which

it is the intended destination, a PRU will either deliver it to a local user attached

to it, or store it in an appropriate outgoing queue for later transmission on the

radio channel. The transmission of the queued packets is attempted transmission

2
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Fig. 1.1 Block structure of a packet radio unit

at times defined by a scheduling algorithm. At each of these times, an actual

packet transmission will or will not take place, according to the decision made by

the channel access protocol being used, whereby the decision may be based on the

state of tie network as perceived by the PRU. Once a packet is transmitted, it

may or may not be successfully received at the intended destination, depending

on t lie characteristics of the )hysical link and on the activity of the neighbors of

the destination PRU. Indeed, in a packet radio network, and unlike the situation

found in a point-to-point network, a packet sent from a transmitter to an intended

imnedlate destination will be heard by PR1.1's other than the intenled destination.

having this the capalbility to interfere with the recep r'n of packets destined to

these other PIDl's (Figure 1.2). l)epending on the specific situation considered, the

3
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Fig. 1.2 Collisions in a packet radio network

overlap at a receiver of an intended packet and of interfering packets can prevent

the correct reception of the former. The ability of a receiver to correctly receive a

packet in the presence of interfering packets is referred to as capture. The specific

conditions (dependent among other things on the signaling method used) under

which a packet is correctly received in the presence of interference are designated

as the capture mode. After the packet transmission takes place, and in the same

way as in a point-to-point network, some acknowledgment mechanism is required

to inform the source of a packet of the success or failure of the transmission.

We can look at a packet radio network as a set of nodes (the PRU's), intercon-

nected by a set of directed radio links determined by the radio connectivity. The

throughpil of a link, the main performance measure of concern in this work. is de-

fined as the fraction of time that tihe link is used for successful packet t ransiissitIs

1.2 General Considerations on the Analysis Problem

Some of the aspects of the operation of a packet radio network described in the

previous Section are difficult to model analytically, and cannot be included in a
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general tractable analytical model. The main sources of difficulty in the analysis of

the performance of a packet radio network are:

(i) Store-and-forward operation: It is difficult to keep track of the length of

packets as they are forwarded from node to node in the network. This same

difficulty had already been encountered in the delay analysis of point-to-point

networks, in the context of packets whose lengths have an exponential distri-

bution ([Klei64]). In this work it was concluded that, for most networks of

interest, with moderate connectivity, the assumption that (Kleinrock's inde-

pendence assumption) the length of a packet is independently redrawn from

the appropriate distribution each time the packed is received at a node within

the network has a negligible effect on the resulting average message delay.

Whereas in general the exact solution of a point-to-point network would be a

very difficult problem, due to the dependence between the interarrival times

and the service requirements (the time between two consecutive packet ar-

rivals can never be smaller than the length of the first of the two packets),

with such an assumption a point-to-point network becomes a Jacksonian

network of queues, admitting a very simple analytical solution.

(ii) Retransmissions: Due to collisions suffered at the intended destination, a

packet at a node may have to be transmitted more than one time. Similarly

to the situation in (i), it is difficult to keep track of the length of packets as

they are retransmitted by a node. We would wish to make, for analytical

tractability, an assumption similar to Kleinrock's independence assumption,

i.e., that packet lengths are independently redrawn at each transmission at-

tempt. Such an approximation would not be reasonable in a situation where

the average time between the end of an unsuccessful transmission and the

next retransmission is small, and the probability of packet loss is high, and
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the variance of the packet length distribution is high, since then it would

be very likely that a long packet would be transmitted soon again after a

long packet finished transmission, contrary to what an independence-type

assumption would predict. In a situation where the above circumstances do

not exist, one would intuitively expect the above independence-type assump-

tion to have a small impact on the predicted system performance. Suc%. an

assumption was used by Ferguson in [Ferg77] for the delay study of a single-

hop unslotted ALOHA channel. In that study, it was stated that "simulation

results indicated that this approximation was quite accurate."

(iii) Queueing: We can look at a packet radio network as a system of interfering

queues, in the sense that the service time at a given queue, i.e., the time

between the arrival of a packet at the head of a queue and its successful

departure, is a function of the activity of neighboring queues. In particu-

lar, and as an example, one would expect in general such time to be larger

at a queue if the neighboring q'ieues are not empty, and thus very likely

to be attempting to transmit packets, than if otherwise. The problem of

interfering queues is a difficult one, and has been solved exactly only for

very simple special cases ([Fayo79], [Nain85], [Sidi83a], [Sidi83b]). This sit-

uation, barring an unforeseeable breakthrough, is not expected to change

substantially in the near future. Tractable models which give some insight

into the performance of interfering queues can 4iowever be constructed, by

disregarding some aspects of the problem. One possibility consists of assum-

ing some form of decoupling between the states of different users ([Saad81],

[Lee82]). Another possibility considers a heavy-traffic situation, in which all

queues are always full. In this case the queueing aspects are unfortunately

no longer represented, but the resulting model is nevertheless still useful to

derive upper bounds on achievable throughputs i.e., capacity results. Still
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another possibility is to consider packet buffers of size one, for which results

on the packet service time (i.e., the time between the arrival of a new packet

to the buffer and its successful departure) can be derived ([Ferg77]). In this

case the queueing aspects are not fully represented, but one still obtains an

indication of the delays experienced by the packets as they travel through

the network.

(iv) Propagation delay: During the operation of a node, packets are considered

for transmission at times dictated by a scheduling algorithm. At each of

these times, the components of the state of the system that are locally ac-

cessible to the node are examined and, depending on the protocol in use,

a transmission is attempted or not. Usually these components of the state

information refer to the activity of packet radio units that the node in ques-

tion can hear. The state information obtained by a node at a given time

is a composite picture of the state of the network, obtained from delayed

versions, according to the propagation times involved, of the states of the

neighboring units. This delayed information may cause the system to enter

states that would otherwise be forbidden under a zero propagation delay op-

eration. Examples of these are states in which neighboring nodes transmit

simultaneously under Carrier Sense Multiple Access. These states cannot ex-

ist in an ideal en. irunment of zero propagation delay due to the action of the

carrier sensing mechanism. Even in the simpler case where the propagation

delays between all pairs of neighbors are taken to be equal, the modeling of

nonzero propagation delay requires the storage of the history of the system

over a period of time equal to the propagation delay. In the case of single-

hop networks with an infinite population of users it is possible to obtain an

analytical treatment of the situation of nonzero propagation delay, as long as

the packet lengths are shorter than the propagation delay ([Kli75b]). In the
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case of general multihop networks the need to store the history of the system

for a nonzero time interval leads to models with a continuous state space,

whose solution cannot be found in practice. Approximate models have been

considered, where the time axis is divided into slots of duration equal to the

propagation delay, and all transmissions start at the slot boundaries. With

suitable assumptions, these models lead to discrete-time Markov chains, and

can be solved by standard methods ([Toba77]).

1.3 Statement of the Problem

The problem studied in this thesis is that of determining the capacity of a

network, as described in the following.

Let us consider a heavy-traffic situation, that is, a situation where each queue in

the network has at any time an infinite number of packets to be transmitted. In this

way, as soon as one packet is successfully transmitted, a new packet is immediately

available to be scheduled for transmission. Consider also that we fix the channel

access protocol, capture mode, and characteristics of the physical link, and let

P be the vector of the remaining network operating parameters (e.g., average time

between reschedulings, traffic generation rates, etc.). Let also S*(P) be the resulting

vector of heavy-traffic link throughputs. Consider now that, from a set of end-to-end

traffic requirements and from a static routing procedure, a vector of required link

throughputs S = a S*(P), 0 < a < 1, results. One would intuitively expect such S to

be feasible when the network is operating at operating point P, in the sense that the

network would be able to support the required link throughputs with finite queue

sizes, and hence finite average message delays. Due to the analytical difficulties

mentioned in Section 1.2, it has not been possible to prove this intuitive expectation
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to be true, except in very simple special cases (see references given in Section 1.2).

Nevertheless, the behavior described has been observed in simulation studies of a

number of more complex network topologies and access protocols ([Toba85]).

Consider the set of feasible throughput vectors, or feasible region. According

to the discussion above, this region can be defined as the set of values of S*(P)

obtained when P ranges over all possible values in the parameter space. From the

point of view of the practical operation of the network, however, the operating

points of interest are those lying on the boundary of the feasible region. Indeed, let

S be a point in the interior of the feasible region, representing a set of required link

throughputs, and let PO and P1 be operating points such that S*(Po) and S*(P 1 )

exist on the line joining the origin and the point S, with S*(Po) on the boundary of

the feasible region and S*(P 1 ) between S and S*(Po) (Figure 1.3). Again intuitively,

one would expect the behavior of the system (say, in terms of average queue sizes) to

be better at the operating point PO than at P1, since in the former case the system

is operating "farther away" from capacity. In addition, if only the traffic pattern,

(i.e., the set of ratios between pairs of required link throughputs) is known, Po is

the natural choice of operating point, in the sense that it is the only value that will

guarantee finite average delays for required link throughputs S =a S*(PO), for all

0 < a < 1. Thus the determination of the points on the boundary of the feasible

region is of special significance in the context of the network operation. We state

now the problem to be addressed in this thesis:

Capacity problemn: Let a packet radio network, defined by its radio

connectivity, channel access protocol, and capture mode, be given.

Let also a desired traffic pattern be specified by a vector S. We want

to find the least upper bound of the set of values of a, where a

is a positive real number, such that aS is a feasible vector of link

throughputs.
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Fig. 1.3 Feasible region in S-space
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Geometrically, the problem stated corresponds to finding the feasible point on

the line passing through the origin and with the direction of S, which lies farthest

away from the origin. For its solution, the problem will be broken down into the

following subproblems: (i) given an operating point P, find the resulting heavy-

traffic throughput S*(P); (ii) given a set of link traffic requirements So, find the

operating point(s) P such that So = S*(P); (iii) given a traffic pattern So, find the

maximum a > 0 such that a So is a feasible set of link traffic requirements, and the

corresponding operating point.

We put as a goal of the model to be developed that it be applicable to the

analysis of a large class of access protocols, including those commonly considered

for packet radio operation (ALOHA, OSMA, Busy Tone protocols), and of the types

of capture resulting from the narrowband and spread-spectrum signaling schemes

commonly used. From such a model we shall later be able to make a comparative

study of the influence of those variables on the performance of the packet radio

system.

1.4 Survey of Related Work

We give in this section a short survey of work in the area of performance analysis

of packet radio networks. Our goal is not to be exhaustive, but rather to present

a number of papers that cover the relevant aspects of the problem. We consider

separately the analysis of single-hop and multi-hop systems.

Literally speaking, a single-hop network is one where packets only need to travel

one hop to reach their intended destination, and thus where no store-and-forwarding

is necessary. According to this definition, having the single-hop property would de-

pend not only on the topology but also on the traffic pattern involved, in such a way



that, for example, a ring network with N > 3 nodes and only nearest-neighbor end-

to-end traffic would be classified as single-hop. However, from the point of view

of the models required for capacity analysis, the nature of the end-to-end traffic

pattern is relatively unimportant, whereas the topology is one of the determining

factors. The distinction between single-hop and multihop, seems to reside rather in

whether or not there exists dependence between the actions of PRU's that are not

within range of each other, "carried" by the intermediate PRU's. Indeed channel

access protocols introduce in general dependencies between the activity of neigh-

boring PRU's, and these dependencies "propagate" across the nietwork. The literal

definition given above does not reflect, then, the established meaning of the term

single-hop. To be consistent with this meaning, we shall accept that a single-hop

network consists either of (i) a population of users such that any pair in the pop-

ulation is in radio connectivity, or (ii) a centralized (star) network, with a receiver

in the center of the star, and a population of transmitters in the outer positions of

the star. Case (i) is referred to as a fully-connected environment, and case (ii) as

a hidden-terminal environment. In this latter case, individual transmitters may be

in radio connectivity with a subset of the set of transmitters.

1.4.1 Single-hop systems

The first random-access protocol considered and analyzed was the ALOHA pro-

tocol. Under this protocol, a new message is transmitted as soon as it arrives at a

PRU, and is retransmitted after a random rescheduling interval if a previous trans-

mission of it resulted in a collision. Some acknowledgment mechanism is assumed

whereby the transmitter learns about the success or failure of the transmission, arid

thus of the need for a retransmission. The ALOHA protocol is called slotted if the

packet transmissions are synchronized so that their starting times are restricted to
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occur at multiples of a given slot size, and unslot ted, otherwise. In [Abra77], Abram-

son gives a collection of results concerning the throughput analysis of centralized

ALOHA systems, for a number of distinct traffic situations and both the slotted

and unslotted cases. Most of the results given concern the situation designated as

zero capture, in which any time overlap between two packets at a receiver leads to

the destruction of both packets. Some results are also given for power capture. In

this situation, a packet transmission with received power PD is successfully received

if the interfering packet has a received power PI such that PI < IPD, where / is

a parameter between zero and one, with P- 1 being designated the capture ratio

([Robe72]). The network considered consists of a population of traffic generators

distributed on the infinite plane with a given density. One of the conclusions de-

rived for these systems is that, when the desired traffic (i.e., throughput) density is

uniform, there is a maximum radius (the Sisyphus distance) beyond which commu-

nication with the central receiver is not possible. In [Ferg77], Ferguson provides an

approximate delay analysis of a centralized unslotted ALOHA system with a finite

number of users, each with a single-packet buffer. He studies the average message

delay as a function of the mean rescheduling delay and the number of users, for

different packet length distributions. He also compares the results of the analysis

with simulation results. In [Klei75a], Kihinrock and Lam analyze the case where a

central station receives packets from a finite population of transmitters, each pos-

sessing a single-packet buffer, using slotted ALOHA. They show that under certain

conditions the operation of the channel becomes unstable, leading to a situation of

low throughput in which most users have backlogged packets to be transmitted, the

retransmission attempts of which keep giving rise to new collisions. In the com-

panion paper (Lam75], dynamic control procedures are introduced and analyzed

that prevent this behavior from occurring. Along a separate direction, in [Saad8l],

Saadawi and Ephremides provide an approximate queueing analysis of a centralized
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slotted ALOHA system with a finite population of users, each of which possesses

a buffer of infinite size, thus obtaining delay and stability results. The authors

achieve analytical tractability by representing the system by a two-level (user level

and system level) description, and assuming decoupling between the two.

The result. of the previous papers show that ALOHA achieves a relatively low

channel utilization, due to the uncoordinated attempts of use of the channel by the

user population. Its performance can be improved in a fully-connected environment

if terminals listen to the channel just prior to transmitting, and refrain from trans-

mitting if they sense the channel busy. The protocol resulting from this mode of

operation is designated as Carrier Sense Multiple Access (CSMA). This protocol was

formally introduced and analyzed for its throughput-delay performance by Klein-

rock and Tobagi in [Klei75b]. The situation analyzed consisted of a fully-connected

infinite population of terminals communicating with a central station. Their results

showed that the carrier sensing mechanism introduced a substantial improvement

in the system performance, as compared with that of ALOHA. However, the car-

rier sensing mechanism does not prevent collisions if some of the terminals cannot

sense the activity of other terminals (hidden terminals), as in a star network, for

example. In [Toba75I, Tobagi and Kleinrock studied a single-hop hidden-terminal

network under CSMA. Their results showed that the existence of hidden terminals

introduces a severe degradation on the system performance relative to that of the

fully-connected situation. In order to obviate this shortcoming, they proposed the

Busy-Tone Multiple Access (BTMA) protocol. According to this protocol, the cen-

tral receiver, which is in radio connectivity with all transmitters, sets up a "busy

tone" on a separate channel whenever it detects any transmission, and the trans-

mitters refrain from transmitting whenever a busy tone is sensed on the busy tone

channel, or any activity is detected on the data channel. In this way the occurrence

of simultaneous transmission attempts is very much reduced (and even eliminated,
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in a situation of zero propagation delay), and the performance improved.

All of the above papers assume a simple form of capture, mostly zero capture,

characteristic of narrowband signaling schemes. Different types of capture are ex-

hibited by another class of signaling schemes, spread-spectrum signaling. In one

such capture mode, time capture, the first packet to reach an intended receiver can

usually be correctly received if its arrival is separated at least by a "capture time"

from the arrival of the next packet. In [Davi8O], Davis and Gronemneyer present the

analysis of a centralized finite-population slotted-ALOHA system with time cap-

ture, in which each user has a single-packet buffer. In this system, users can be at

different distances from the central receiver. If every user transmitted at the slot

boundaries, the packets would arrive at the central receiver in order of increasing

link range, thus leading to discrimination against transmitters which are sufficiently

far from the receiver. In order to avoid this situation, the authors consider that ter-

minals; delay their transmissions for a period of time which is the sum of a quantity

linearly dependent upon their distance to the receiver and a uniformly distributed

random variable, in such a way that the arrival times of the packets at the central

receiver are uniformly distributed in the same time interval. The authors then show

that such system possesses excellent delay and throughput performance, and that

by careful selection of the system parameters system stability can be maintained

even in the presence of severe fluctuations in user population or traffic loading.

The above papers cover the main aspects of the multiaccess problem in a single-

hop environment. A good general reference for the earlier work is contained in

Chapter 5 of [Klei76].

Still within the framework of single-hop networks, other authors consider some

more elaborate capture and channel models. In [Rayc8l], Raychauduri considers a

single-hop network with a finite population of transmitters, using a Code Division
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Multiple Access (CDMA) scheme. In this scheme, each transmitter uses a different

code in the encoding of the data in their packets. A pool of separate receivers, each

of which can "tune in" to a different code, is assumed, and a probability of correct

packet reception dependent on the level of multiuser interference is considered.

For this model, throughput-delay results are derived. In [Stor84], (Toba84],and

[Stor85], Storey and Tobagi consider a more complex model, in which the full-

duplex operation of the PRU's is represented, and where the effect of coding of

the data, prior to modulation, on the system throughput is studied. The former of

these papers also considers a "channel load sense access protocol," in which radios

are blocked from transmitting when the channel is heavily loaded. This study

considers both the cases of zero and non-zero propagation delay. In [Purs83], Pursley

considers asynchronous frequency hopping systems with fixed length packets, to find

the throughput and the probability of a packet being correctly received.

Aside from these papers, which focus on the multiaccess aspect of the problem,

there is a vast literature just devoted to the characterization of multiuser interference

in spread-spectrum systems. The purpose of these studies is usually to compute the

probability of bit errors as a function of the type of modulation and signaling, the

codes employed, and the (fixed) number of overlapping signals. A good source of

references on the subject is the May 1982 Special Issue on Spread-Spectrum Systems

of the IEEE Transactions on Communications.

1.4.2 Multihop Systems

One of the first studies on multihop networks was done by Gitman in [Gitm75].

The system considered consisted of a set of clusters (each with an infinite popula-

tion of users) that communicate with a central station. The clusters are not within

hearing range of the station, and thus a set of repeaters is employed, each servicing
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one cluster. The clusters cannot hear each other, as well as repeaters other than

the ones assigned to relay their messages, but each repeater can hear, and be inter-

fered by, a given number I (taken as a parameter) of other repeaters. The slotted

ALOHA protocol is used. The system operates using different frequencies for the

inbound and outbound traffic. The paper analyzes the capacity of such a system,

and discusses techniques for performance improvement. The techniques considered

are the use of directional antennas at the central station or at the repeaters, and

the use of multiple transmitters at the central station. The author analyzes the

bottlenecks in the system, and discusses the range of system parameters for which

each of these techniques can increase the system throughput. In IToba8Oa] and

[Toba8Ob], Tobagi considered a similar system, but with inbound traffic only. He

considered two different types of connectivity for the repeaters: fully connected, and

star connected. He assumed that repeaters had a finite storage capacity, and stud-

ied the throughput-delay performance of such system for both the slotted ALOHA

and OSMA protocols. Two different retransmission strategies at the repeaters were

considered: (i) immediate first transmission (IFT), whereby a packet just arrived

at the head of the repeater queue is attempted transmission in the next slot with

probability one, and (ii) delayed first transmission (DFT), whereby such a packet

incurs a geometrically distributed delay upon its arrival at the head of the queue.

The paper also studied the improvement in performance due to increasing the buffer

size M. The main conclusion drawn from this study is that there is a slight increase

in performance from M = I to M = 2, but that for M > 2 no significant improve-

ment in performance is obtained relative to the case Ml = 2, and thus the system is

channel-bound rather than storage-bound for the higher values of M. In [Yemi8O],

Yemini analyzed a tandem (chain) network for two variants of slotted ALOHA, and

derived the capacity of the resulting system.

A number of other studies have looked at networks where nodes are considered
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to be randomly placed on the plane, with the connectivity being determined by a

"transmission radius." Kleinrock and Silvester, in [Klei78], and Silvester, in [Silv80],

consider the problem of finding the transmission radius that maximizes the system

throughput, and conclude that such a radius should be chosen to be such that, on

the average, each PRU can be heard by approximately six other PRU's. The former

of these papers introduces the notion of expected forward progress, defined as the

average reduction in distance towards the destination of the packet achieved in one

hop. In [Taka84], Takagi and Kleinrock consider a similar situation, but in which

power capture exists, for both slotted ALOHA and CSMA. The system performance

measures used are the expected forward progress and the probability of success of

a transmission. It is observed that for a slotted ALOHA system, perfect capture

offers an improvement over zero capture of 36 percent on the expected progress.

It is also remarked that the improvement obtained by CSMA over ALOHA on the

expected progress amounts only to 6 percent, which is much less than that obtained

in a fully-connected environment. This fact is attributed to the existence of hidden

terminals. In [Nels84], Nelson and Kleinrock consider a similar network, and deter-

mine throughput equations for slotted ALOHA with power capture. Their results

show that increasing the capture parameter increases the throughput of the net-

work, and also show the tradeoff between the probability of successful transmission

and the expected forward progress. In [Hou86], Hou and Li consider three trans-

mission strategies: (i) most forward with fixed radius, in which a node will transmit

with a fixed transmission radius R to a neighbor chosen such that the largest for-

ward progress results, (ii) nearest with forward progress, in which the transmission

power is adjusted to be just strong enough to reach the nearest neighbor which will

result in forward progress, and (iii) most forward with variable radius, in which

the transmission radius is adjusted to reach the destination receiver. They study

throughput and forward progress for such a system, and show that the network
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can achieve higher throughput and average progress by adjusting the transmission

power. Among the three transmission strategies considered, (iii) is seen to lead to

higher throughput and progress, with the performance being maintained even with

a changing network topology.

In [Sous85], Sousa and Silvester consider the same problem, but taking a dif-

ferent approach regarding the connectivity and capture model. They remark that,

in reality, a "hard" transmission radius does not exist, but rather the successful

reception of a packet is a function of the relative strengths of the desired signal and

of the interference at the receiver. They then consider a spread-spectrum system for

which they develop a multiuser interference model based on an inverse power prop-

agation law. For this system it is shown that the optimum addressing range should

be chosen so that, on the average, there are 1.3vr terminals closer to the transmit-

ter than the receiver, where K is the effective maximum number of simultaneously

successful transmissions.

A number of other works have addressed performance issues in general multi-

hop topologies. In [Nels85aI, Nelson and Kleinrock introduce a variant of CSMA

called rude-CSMA, under which a node transmits sometimes even if the channel

is sensed busy, and present a model for the analysis of arbitrary topologies un-

der this protocol Using this model, they analyze (i) a six-node grid network, and

(ii) one randomly-generated seven node network with a variant of CSMA called

rude-CSMA. Their results show that, for case (i), the optimal strategy consists of

transmitting with a nonzero rate even if the channel is sensed busy, while in case

(ii) the optimal strategy is to act as in CSMA. In [Taka85], Takagi and Kleinrock

analyze two multi-hop topologies, operating under slotted-ALOIA, in which a num-

ber of end users exchange packets via a number of intermediate repeaters. Each

repeater possesses a single-packet buffer. A detailed Markovian state description
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(I la networks of queues) is constructed, and the throughput-delay performance is

analyzed. The paper then proposes different ways of reducing the average delay for

a given throughput: (i) transmission suppression, in which a repeater with no buffer

space available transmits a "busy tone" in a separate channel to its neighbors to

indicate that they should not attempt to transmit a packet to it in the next slot,

(ii) transmission acceleration, in which a node transmits a packet in the next slot

with probability one, instead of same probability p < 1, if the neighbors of the

destination are known to have empty buffers in the current slot (the capability to

acquire this information is assumed), and (iii) multiple buffers !or repeaters. The

techniques of (i), and (i) and (ii) combined are seen to lead to a significant per-

formance improvement. The technique of (iii) has effects similar to those reported

in [Toba80a] and [Toba80b], namely that there is a marked improvement when

the repeater buffer size is increased from one to two, but little improvement after

that. In [Lee82], Lee and Silvester introduce a model for the approximate queueing

analysis of multihop networks with teneral topologies under slotted ALOHA. The

model replaces the detailed description of the interference at a node due to the

activity of neighboring nodes by an average interference parameter, identically and

independently distributed from slot to slot. In this way, decoupling between the

activity of different queues is obtained. The paper derives expressions for the gener-

ating functions of the distribution of queue sizes, and obtains delay and throughput

equations. The results are then compared, for some sample networks, to results

derived via simulation, with good general agreement. In [Boor8O], Boorstyn and

Kershenbaum introduce a heavy-traffic Markovian model for the analysis of CSMA

in arbitrary symmetric topologies with exponentially distributed packet lengths.

They show that the steady-state distribution of the stochastic process describing

the activity of the transmitters has a product form, and derive throughput equations

for the case of perfect time capture. The same authors togethei with Sahin analyze
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in [Boor82] the same system when echo acknowledgments are considered. Maglaris,

Boorstyn and Kershenbaum present in [Magl83] an extension of the model to Cox-

ian packet length distributions. Extensions to other protocols and capture modes,

as well as a formal analysis of similar systems, are given by Tobagi and Brizio

in [Toba831, [Braz841, [Braz85a], and [Braz85b]. In [Chen85], Chen and Boorstyn

give an approximate analysis of CDMA networks, and in [deSo85] deSouza, Chen

and Boorstyn present a comparative evaluation of a number of access protocols,

as well as the effects on performance of hearing radius. Starting from the same

basic model, Yemini presents in [Yemi83] a macroscopic model, applicable to large

user populations, based on ideas from Statistical Thermodynamics. In this model,

an analogy is made between network quantities, such as concurrency and average

rate of blocking, to macroscopic quantities in a large system of particles such as

a gas. Results available for such systems, such as those concerning critical phase

transitions, -are translated into corresponding results concerning large networks.

1.5 Outline of this Dissertation

We now describe the contents of this dissertation. Chapter 2 deals with signaling

and capture. This Chapter considers the two signaling methods employed in packet

radio communication, namely narrowband and spread-spectrum, and characterizes

qualitatively the capture properties obtainable therefrom. Section 2.1 defines nar-

rowband signaling, and describes the power capture typical of this type of signaling.

Section 2.2 is devoted to spread-spectrum signaling. It presents the general proper-

ties of spread-spectrum signaling, and briefly describes the generation of the signal

for the direct-sequence and frequency-hopping methods of spread-spectrum signal

generation. It then discusses the different choices available for the assignment of

21



code sequences to different users and to different data bits belonging to a given user,

and the impact of such choices on the synchronization and bit error properties of

the corresponding systems.

Chapter 3 deals with channel access protocols. Section 3.1 examines the kind of

information required by a channel access protocol. Section 3.2 presents a number

of definitions relevant for the specification of channel access protocols. Section 3.3

classifies the protocols commonly considered for packet radio operation in three

classes, according to the nature of the information required for their operation:

(i) ALOHA protocols, (ii) activity sensing protocols, and (iii) Busy Tone protocols.

It then defines the main protocols of practical interest in each of these classes.

Chapter 4 describes the analytical model considered in this work. Section 4.1

defines formally the elements that specify a packet radio network. Subsection 4.1.1

deals with the topology and traffic requirements. Subsection 4.1.2 defines the class

of channel access protocols considered for analysis, and gives their formal specifi-

cation in terms of the blocking between radio links, i.e., the specification of which

transmissions are allowed to start at a given time, given the set of transmissions

already taking place at that time. The class of protocols considered includes most of

the protocols used in packet radio applications. It further defines a subclass of the

above class of channel access protocols, for which the protocol decisions are based

only on the state of the network transmitters, and whose elements lead to a form

of decoupling in the representation of the network activity and in the evaluation

of the network throughput. Subsection 4.1.3 describes the general capture model

considered for analysis, and defines two particular capture modes, zero capture and

idealistic perfect capture, that will be later considered in a number of examples.

Finally, Section 4.2 introduces the network operating model that is considered in

the remaining part of this work, and discusses the validity of its assumptions for
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the purpose of capacity analysis.

Chapter 5 presents the analysis of the class of protocols for which the protocol

decizicons ,-re corn pl1tely specified by the state of the network transmitters. The

protocols in this class lead to decoupling between the description of the activity of

the receivers and the activity of the transmitters, and the corresponding systems

are referred to as decoupled systems. Section 5.1 presents a Markovian model for

the description of the transmitter activity. The model is a direct extension of a

model introduced by Boorstyn and Kershenbaum in [Boor80] for the analysis of

Carrier Sense Multiple Access. This Section characterizes the state space of the

corresponding stochastic process, derives the balance equations for its steady-state

probability distribution, and investigates the conditions under which this distribu-

tion possesses a product form solution. The existence of a product form solution

is shown to be equivalent to symmetry in link blocking. This Section also shows

that the product form solution is computationally NP-hard. Section 5.2 presents a

Markovian model for the description of the activity of the receivers, and derives the

equilibrium equations of the corresponding stochastic process in a form that empha-

sizes the decoupling afforded by the class of protocols considered in this Chapter.

Section 5.3 presents the derivation of throughput measures from probability mea-

sures and hitting times associated with the processes describing the activity of the

receivers and of the transmitters. This Section also presents the derivation of the

throughput equations for a four-node ring network, as an example of application of

the formalism developed in this Chapter.

Chapter 6 presents the analysis of the more general class of channel access

protocols that do not lead to decoupling between the descriptions of the activity of

the transmitters and the activity of the receivers. Section 6.1 presents a Markovian

model for the description of the network activity. It presents the characterization
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of the state space of the associated stochastic process, and presents the balance

equations satisfied by its steady-state probability distribution. Section 6.2 presents

the derivation of throughput equations, using an approach similar to that of Chapter

5.

Chapter 7 extends the results of Section 5.1 on the existence of a product form

solution for the process describing the transmitter activity, to the case of nonex-

ponential packet length distributions and non-Poisson scheduling processes. The

resulting non-Markovian processes belong to a class known as Generalized Semi-

Markov Processes (GSMP's). Section 7.1 introduces the problem. Section 7.2 gives

the definition of a GSMP, and presents the properties of a GSMP that are of interest

for our applications. Section 7.3 introduces two constructions for the rescheduling

point process, designated as Continued Renewal Rescheduling and Restarted Re-

newal Rescheduling, that reduce to a Poisson process for exponential rescheduling

intervals, and formulates the resulting transmitter activity processes as GSMPs.

Section 7.4 studies the existence of a product form solution under each of the

rescheduling mechanisms considered. For Continuous Renewal Rescheduling with

Poisson rescheduling processes and for Restarted Renewal Rescheduling with ar-

bitrary rescheduling processes these conditions are found to be identical to those

found in Chapter 5 for the case of exponential packet lengths. Continuous Renewal

Rescheduling with arbitrary rescheduling intervals is found not to possess in general

a product form solution. Section 7.5 formulates the transmitter activity process as

the state of a queue with state-dependent arrivals, thus establishing a connection

between the processes considered in this work and some processes considered in the

queueing literature.

Chapter 8 deals with the computational aspects of the capacity analysis. Section

8.1 intrcduces the problem. Section 8.2 is devoted to the computation of the link
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throughputs given the channel access protocol, the capture mode, and the operating

parameters (rescheduling rates and average message lengths) of the network. Sub-

section 8.2.1 considers the more general protocols of Chapter 6, which do not lead

to decoupling between the activity of the transmitters and the activity of the re-

ceivers. These protocols require the numerical setting up and solution of the balance

equations of the processes involved. The enumeration of the state space of these

processes is reduced to the traversal of a directed graph, and a breadth-first search

(bfs) is considered for this purpose. A number of properties of the Ufs enumeration

of the state space are then established. From these properties, a characterization

of the order in which states are enumerated and an efficient algorithm for that

enumeration are derived. Finally, algorithms and data structures appropriate for

a computer-implemented enumeration of the state space, setting up of the balance

equations, solution of the systems of linear systems involved, and computation of

throughput, are described. Subsection 8.2.2 considers the restricted class of proto-

cols considered in Chapter 5, which lead to decoupling between the activity of the

transmitters and of the receivers. Its contents parallel those of Subsection 8.2.1.

Section 8.3 considers the problem of, given a set of link throughput requirements,

solving for the network operating parameters that attain those requirements. This

Section presents a fixed-point iteration algorithm for the solution of the problem.

Section 8.4 considers the problem of finding the capacity corresponding to an a

priori given traffic pattern. Two strategies are presented: (i) a trial-and-error bi-

nary search method, at each step of which the feasibility of a tentative value of

the capacity is tested, and (ii) a parametric method that, given an arbitrary linear

functional h of the rescheduling rates, finds the network throughput as a function

of the value assigned to h, and then obtains the capacity by maximization over that

value.

Chapter 9 presents numerical applications. This Chapter gives capacity results
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for a number of parametric topologies (rings, chains, and stars) and randomly gen-

erated topologies. A number of Busy Tone protocols, the Carrier Sense Multiple

Access protocol, and two ALOHA protocols are considered, in both narrowband

and spread spectrum environments. Section 9.1 specifies the spread spectrum and

the narrowband systems considered. It also describes the noise and the capture

model, the topologies, traffic patterns, and access protocols considered. Section 9.2

presents the numerical results. Even though only small networks can be accom-

modated due to the fast growing computational complexity of the analysis, these

results allow some insight to be gained. In particular, they establish a ranking of

the protocols in terms of their capacity performance, and illustrate the tradeoff

achieved by the different protocols and signaling methods in controlling collisions

at the receivers versus allowing the transmitters wide access to the channel.

Chapter 10 concludes with some general remarks on the problem of performance

evaluation of packet radio networks, and with some suggestions for future research.
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Chapter 2

SIGNALING AND CAPTURE

This chapter is concerned with one of the factors that influence the correct

reception of a packet by an intended receiver in the presence of multiuser interfer-

ence, the signaling method. The signaling methods examined are narrowband and

spread-spectrum, together with the capture behavior obtained therefrom. Section

2.1 defines narrowband signaling, and describes the power capture typical of this

type of signaling. Section 2.2 is devoted to spread-spectrum signaling. It presents

the general properties of spread-spectrum signaling, and briefly describes the gen-

eration of the signal for the direct-sequence and frequency-hopping methods of

spread-spectrum signal generation. It then discusses the different choices available

for the assignment of code sequences to different users and to different data bits

belonging to a given user, and the impact of such choices on the synchronization and

bit error properties of the corresponding systems. The discussion of this Chapter

is complemented by a quantitative model for the analysis of multiuser interference

presented in Appendix I.
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2.1 Narrowband Signaling

In narrowband signaling, the binary sequence of pulses representing the data

modulates a carrier directly. Examples of modulation types commonly used for

narrowband data transmission are amplitude shift keying (ASK), frequency shift

keying (FSK), phase shift keying (PSK), as well as variants of these ([Shan79]). All

these schemes possess the properties that

(i) the presence of a transmission using the modulation scheme in question

is easily detected;

(ii) an overlap in time at a re.eiver with a signal with the same modulation

type and of comparable power will give rise to bit errors in the desired

data.

Narrowband schemes exhibit power capture: if PD is the received power of the

desired signal and P is the received power of the interfering signal, a desired data

bit will be correctly received if P1 < /PD, for some 0 < P 5: 1, with /- being called

the capture ratio. The case f = 0 is called zero capture (the stronger signal is always

received with error as long as there is any overlap), and the case / = 1 is called

perfect capture (the stronger signal is always correctly received). (Of course, this is

a simplified (deterministic) model, that does not take into account the probabilistic

nature of the situations involved.) Even though individual bits of a packet may

be correctly received in the presence of overlaps with other weaker signals, the

correct reception of a packet depends on additional characteristics of the receiver.

Consider the situation shown in Figure 2.1a, in which a desired packet arrives at,

and starts being successfully received by, a receiver whose channel is idle. This

packet is later overlapped by an interfering packet of amplitude small enough not

to cause bit errors, and whose end extends beyond the end of the first packet. If, by

monitoring the sudden decrease in the power of the received signal, or by examining
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Fig. 2.1 A desired signal overlapped by a weaker signal
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a possible byte count field in the packet header, the receiver can determine the time

at which the first packet ends, then its reception will be successful. Otherwise, the

receiver will assume the data bits of the remaining of the second packet to belong

to the first one, thus acquiring incorrect data. Similarly, in the situation shown in

Figure 2.1b, where the interfering packet arrives first, if the receiver can detect the

increase in the received power due to the start of the desired packet and has enough

"intelligence" to reset at that point the packet processing functions, then the desired

packet will be successfully received. Otherwise, it will be lost. In a simplified model

of power capture, we can assume that the correct reception of the desired packet is

determined by the satisfaction of the condition P1 < I3PD (see [Robe72], where it

is assumed that a desired packet overlapped by an arbitrary number of interfering

packets will be successfully received if each interfering packet individually satisfies

this condition).

Random fluctuations due to receiver thermal noise are superimposed on the

signal, and can also give rise to bit errors. The analysis of the noise performance

of narrowband signaling schemes can be found in most elementary communications

textbooks (e.g., [Shan79I).

2.2 Spread-Spectrum Signaling

The essential idea behind spread-spectrum is that of encoding the data bits in

the transmitted signal prior to modulating a carrier. Quoting from [Pick82I,

"Spread spectrum is a means of transmission in which the signal
occupies a bandwidth in excess of the minimum necessary to send
the information; the band spread is accomplished by means of a code
which is independent of the data, and a synchronized reception with
the code at the receiver is used for despreading and subsequent data
recovery."
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According to this definition, the coding aspect is essential. Modulation schemes

such as FM, which occupy a bandwidth in excess of the strict minimum necessary,

are not considered as spread-spectrum.

General properties of the spread-spectrum signal are:

(i) it is difficult for a receiver, without the knowledge of the codes being

used in a transmission, to detect its presence;

(ii) spread-spectrum offers a larger degree of immunity than narrowband to

bit errors caused by overlaps with similar signals; these similar signals

can be, in particular, time delayed versions of the desired signal, whose

presence is due to multiple propagation paths between the transmitter

and -the receiver (multipath components).

We examine in the following sections the generation of the spread-spectrum signal,

as well as some system aspects such as synchronization and code assignment.

2.2.1 Signal Generation

One way of achieving Spread Spectrum operation consists of the use of direct

sequence (DS) modulation. Assume that the data is represented as a sequence of

binary digits. A bit of information (say 0) is encoded as a well specified sequence

of ±I pulses, or "chips". We call this sequence the code waveform. Bit 1 will be

normally represented by the complementary sequence. It is the sequence of chips

resulting from the concatenation of the code waveforms corresponding to the bits in

the data stream which then modulates a carrier (usually using some variant of phase

modulation [Dixo84J) and is transmitted. The transmitted chip sequence can thus

be viewed as the result of multiplying, for each bit, the corresponding code waveform

by +1, if a zero is to be transmitted, or by -1, if a one is to be transmitted, and
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transmitting the resulting waveforms in succession. The sequence of codes used in

this process is referred to as the code sequence. In order to perform the reception of

the data, the receiver is equipped with filters matched to the code waveforms used

to represent the data bits. These filters perform the crosscorrelation between the

input signal and the waveform whose presence the filter is intended to detect. As

the incoming signal is processed, whenever there is a match the response of the filter

will exhibit a peak, ideally narrow in width and high in amplitude, corresponding to

the main lobe of the autocorrelation of the signal. For the scheme above indicated,

a data bit zero will give rise to a positive pulse and a data bit one will give rise to a

negative pulse. In addition to the detection of the presence and value of the data,

these peaks are used for the acquisition of bit timing. In the absence of a matching

codeword, the response is of much smaller amplitude.

Another spread spectrum technique is frequency hopping (FH)(see for example

[Kahn78I). One method of generating a FH signal can be viewed as a modification

of frequency shift keying. In FSK, a local oscillator with a given (fixed) frequency

is frequency modulated by the data sequence. An instance of a frequency hopping

signal can be obtained from a variant of this scheme by having instead the data

sequence frequency modulate the output of an oscillator, whose frequency is changed

at regular time intervals (the dwell time) according to a pseudo-random pattern

known to both the transmitter and receiver. Here, the codes are the sequences

of frequencies that are selected to be frequency modulated by the data signal. In

order to receive the original data, the receiver multiplies the received signal by a

synchronized replica of the output of the oscillator used to generate the signal, thus

obtaining an FSK signal modulated by the original data sequence. We shall not

consider FH in the remainder of this work, although the formalism to be presented

is applicable to its analysis.
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2.2.2 Synchronization

Another important aspect of the definition of spread spectrum presented above

is that of synchronization: in order to be able to receive the data correctly, a receiver

must not only know what code to use, but also the starting point in time of the code

sequence. A common solution is to precede each packet transmission by a preamble,

the bits of which are encoded using a fixed code waveform chosen to have good

correlation properties (i.e., such that its periodic autocorrelation exhibits a narrow

main lobe and sidelobes with much smaller amplitude, and its crosscorrelation with

the other codes used in the system has small maximum values). The presence and

time origin of the preamble code waveforms can then be detected, for example, by

means of a matched filter, or of a sliding correlator([Dixo84]). The repetition of the

code waveform will give rise to a series of pulses that indicate the position of the

boundaries of the data bits of the received packet. The preamble may also serve

to convey additional control information, such as the type of error correction and,

in the case where not all users use the same code sequences, the characteristics

of the code waveforms used in the transmission of the data portion of the packet.

Having successfully processed the preamble of an incoming packet, the receiver at

a node will thus lock onto the data portion of the packet until its transmission

is completed (unless of course, in the meanwhile the transmitter was allowed to

become active, thus aborting the reception, due to the half-duplex operation of

the P RU's). Eirrors in the processing of the preamble may be due to overlaps in

time with another packet's preamble (preamble collision), or due to the presence

of other ongoing transmissions, which act as background noise and thus reduce the

effective signal-to-noise ratio. The probability of such errors depends on the set of

transmitters which are active at the start of the preamble, on the evolution of the

system during its transmission, and on the codes of the interfering signals. These

probabilities will be later incorporated as parameters in the analytical model to be
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developed in this work. We discuss now the influence of the type of code assignment

on the errors in the processing of the preamble.

2.2.3 Preamble Code Assignments and Preamble Collisions

Receivers are normally able to lock onto new packets in the presence of the data

portion of other packets. Indeed, the data portions are usually encoded using codes

different from, and ideally orthogonal to, those of the preambles. Thus, the presence

of codes of the data portions will produce, at the output of the filter matched to

a given preamble code, a signal that looks like background noise. On the other

hand, the presence of the preamble code will give rise to pulses which are narrow

and whose amplitude is much higher than that of the background noise, and from

which the receiver is able to deduce the bit timing of the desired packet, as well as

the information contained in the preamble, and thus lock onto the new packet.

Preamble collisions result from the simultaneous presence, at a receiver in the

synchronization stage, of preambles using the same codes. In these circumstances,

a receiver will see at the output of the matched filter two or more interleaved

sets of correlation spikes. If their time separation is smaller than the width of

the main correlation lobe, the synchronization process will fail. Otherwise, if the

receiver has enough "intelligence" to recognize this situation and select one of these

sets, it will be able to lock onto the corresponding packet. The set of neighboring

transmissions that are potential preamble colliders depends on the way preamble

codes are assigned to different users. We consider three particular cases. We say

that we have uniform codes if all packet transmissions in the network use the same

preamble codes. In receiver-directed codes, each node has an assigned network wide

unique code, which is used by all sources wishing to communicate with that node

in the preambles of their transmissions. In transmit ter-assigned codes, each node
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has an assigned networkwide unique code, which it uses in the preambles of all its

transmissions.

In the case of uniform code sequences, all the transmissions by all neighbors

(i.e., nodes within hearing range) of a given node use the same preamble code

sequence, and can thus cause possible collisions. In the case of receiver-directed

codes, only those transmissions destined to the node under consideration will use

the code sequence that the node is "listening" to. Thus, if the set of preamble codes

was chosen to have good correlation properties, only those transmissions will, with

high probability, cause preamble collisions. If transmitter-assigned code sequences

are used, no two preambles present simultaneously at a receiver will use the same

codes, and thus the probability of failure to synchronize to one of these signals is

even smaller than in the previous cases. However, this last solution requires the

existence, at a node, of a bank of filters matched to the preamble codes of all its

neighbors.

2.2.4 Data Portion Code Assignments and Bit Errors

The bits in the data portion of a packet can be encoded using all the same code,

or using codes that change on a bit-by-bit basis. We refer to the former situation

as bit-homogeneous codes, and to the latter as bit-changing codes. These two

systems possess different behavior with respect to bit errors caused by multiuser

interference. Consider a system where bit-homogeneous codes are used. In this

case, given a packet locked onto by a receiver, an overlapping packet using the

same code will interfere whenever its autocorrelation peaks fall within those of the

earlier packet; i.e., whenever the bit periods of the overlapping packets are within a

few chip times of each other, causing the peaks to overlap. This means that there

is a vulnerable period of a few chip times for each bit during which the arrival
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of a new packet will cause destruction. Since usually the number of chips in a

codeword is large (from several tens to on the order of a thousand), the cumulative

vulnerable period for a packet remains small compared to its entire transmission

time, and hence the capture effect. The use of bit-changing codes will lessen the

effect of overlapping packets. In this case, the receiver must be equipped with a

programmable matched filter which follows the pattern as it varies from bit to bit.

If the pattern is long enough so that it does not repeat itself during the transmission

of the longest packet, then any late overlapping packet will not interfere with the

packet locked onto earlier, since it will not produce any autocorrelation peak during

the entire reception time of the earlier packet. The problem of packet acquisition

incurred with arrival times too close to each other still persists, since one will require

the code sequence to start from the same point, known to receivers.

Different codes can be used in the encoding of the data portions of packets

belonging to different immediate source-destination pairs. As in the case of the

preamble codes, we distinguish the followin. cases: uniform codes, receiver-directed

codes, and transmit ter-assigned codes. The same conclusions can be drawn for each

of these assignments regarding the potential for bit errors caused by transmissions

with the same codes overlapping the desired packets within the vulnerable period.

However, as mentioned above, the extent of this vulnerable period is just a few chip

times at the start of a packet in the case of bit-changing codes, and can be neglected

for all practical purposes.

The conditions for correct reception of a packet which is locked onto, and during

whose reception the destination node does not switch to transmit mode, depend

additionally on the forward error correction scheme. We do not discuss this aspect

in this work. A study incorporating the effect of coding in the system performance

can be found in [Stor85].
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2.3 Summary and Conclusions

We examined in this Chapter the two types of signaling used in packet ra-

dio, namely narrowband and spread spectrum, and the capture behavior obtained

therefrom. Section 2.1 discussed narrowband signaling. The narrowband signal was

characterized by the properties that

(i) the presence of a transmission using the modulation scheme in question

is easily detected;

(ii) an overlap in time at a receiver with a signal with the same modulation

type and of comparable power will give rise to bit errors in the desired

data.

A satisfactory approximate model for the capture behavior of narrowband signaling

consists of assuming that, if PD is the received power of the desired signal and P1

is the received power of the interfering signal, a desired data bit will be correctly

received if PI < PPD, for some 0 <,6:5 1, with 8- being called the capture ratio.

This behavior is referred to as power capture. Even though, due to power capture,

individual bits of a packet may be correctly received in the presence of interference,

the correct reception of a packet was seen to depend additionally on the ability of

the receiver to distinguish the data bits belonging to the interfering packet from

those belonging to the desired packet.

Section 2.2 discussed spread spectrum signaling. In this type of signaling, data

bits are individually encoded prior to modulating a carrier. Spread spectrum signals

were characterized by the properties that

(i) it is difficult for a receiver, without the knowledge of the codes being

used in a transmission, to detect their presence;

(ii) spread-spectrum offers a larger degree of immunity than narrowband to
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bit errors caused by overlaps with similar signals; these similar signals

can be, in particular, time delayed versions of the desired signal, whose

presence is due to multiple propagation paths between the transmitter

and the receiver (multipath components).

We described the generation of the signal for the direct sequence and (req uency-

hopping variants of spread spectrum. We also discussed how the synchronization

of a receiver with the codes of the incoming signal can be accomplished by the

use of a preamble. We then classified the possible choices of code sequences, for

use either in the preamble or in the data portion of a packet, according to (i) how

sequences are assigned to different users (as transmit ter-assigned, receiver-directed,

or uniform), and (ii) how codes are assigned to different bits of a given user (as

bit-changing, or bit-homogeneous). We also argued that, in terms of the immunity

they afford regarding multiuser interference, bit-changing codes perform better than

bit-homogeneous codes, and that, within the latter category, the ranking of types of

assignment in terms of descending order of performance is (i) transmitter-assigned

codes, (ii) receiver-directed codes, and (iii) uniform codes.
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Chapter 3

CHANNEL ACCESS PROTOCOLS

In the previous Chapter we examined one of the aspects of. the process of suc-

cessful exchange of packets between two nodes, namely the conditions under which

a receiver will correctly receive the data in a packet in the presence of multiuser

interference. In this Chapter we focus on a complementary aspect of that process,

which is the conditions under which a transmitter is allowed to transmit a packet.

Such conditions define the channel access protocol.

In order for a node to make th. decision on whether its transmitter can start

transmitting a new packet at a given time, the node needs information concerning

the state of a subset of the network. For a practical implementation of the protocol,

the node has to have the capability to perform a number of functions (such as

sensing the activity of neighboring nodes) in order to acquire that information.

These functions may or may not be easily achievable, depending in particular on the

type of signaling, and on the type of code assignments in the case of spread spectrum

signaling. We examine these issues in the present Chapter. Section 3.1 presents a

formalization of the notion of channel access protocol. Section 3.2 gives a number of

definitions that relate to the specification of the access protocol. Among these will
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be the sensing functions just referred to, and for which we will discuss feasibility

as a function of the system structure. Section 3.3 classifies the protocols commonly

considered for packet radio operation in three classes, according to the nature of

the information required for their operation: (i) ALOHA protocols, (ii) activity

sensing protocols, and (iii) Busy Tone protocols. It then defines the main protocols

of practical interest in each of these classes.

3.1 Introduction

An access protocol is a set of rules that, given the current global state of the

network, determines whether or not a given source node can initiate the transmission

of a new packet to a given destination node. Formally, let Xk(t) represent a sufficient

description, for the purposes of the access protocol, of the state of node k at time t.

A complete network state X(t) is obtained by building a vector of the node states

X(t) = (XIMt, X2(),.. - , XN(W).

Let j represent a directed radio link in the network, and L be the number of such

links. The access protocol is specified by a vector boolean function

B(X) = (BI(X), B2(X), .. ., BL(X)),

where Bj(X) takes the value 1 if link j is blocked (that is, not allowed to initiate a

transmission) when the state of the network is X, and 0 otherwise.

The most complete state description of the network contains the history of the

network activity up to the current time. However, only a very small subset of this

information is usually used by an access protocol. For most protocols of interest,
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in an ideal situation of zero propagation delay, a sufficient description XQt) of the

network state is one which includes the information, for each node, as to whether the

node is currently idle, transmitting a packet, or receiving a packet, and in the last

two cases, the destination or source node, respectively. In a more complex situation

one might have to include additional information, such as whether the node is

receiving the header or the data portion of a packet, whether a busy tone signal is

being transmitted, or even some information about the past history of the system.

Consider, as an example, the I-persistent OSMA protocol ([Klein75c]). In this

protocol a terminal with a packet ready for transmission senses the channel before

attempting transmission. If the channel is sensed idle, the terminal transmits the

packet. Otherwise, the terminal waits and then transmits the packet as soon as the

channel is sensed idle again. Thus the transmission of a packet is attempted as soon

as the channel goes idle whenever there was an attempt at transmitting that same

packet during the preceding busy period. The state description for this- protocol

then requires, in the case of a node whose channel is currently busy, information on

whether a packet transmission was attempted during the time interval between the

instant the channel last went busy, and the current time. Another example where

additional state information is required is a situation of nonzero propagation delay.

In such a situation the decision made at node ni and time t by the protocol is based

on the state of nodes k = 1, ., N, at times I - Tkn where rkn is the propagation

delay from node k to node n. Thus the state description will at least have to

contain the past history f X0( - Trk,) 1 < k < N, 1 < n < N }. In the model later

considered in this work, the state description will have the simpler form described

in the first part of this paragraph.

From a conceptual point of view, it is possible to have protocols such that the

decisions made at a node make use of global state information. However, for practi-

cally realizable protocols, the rules embodied in the access protocol are constrained
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to be defined only in terms of information that can be made available locally at the

source node of the link, such as the state of the receiver at that node, and the state

of the transmitters in some neighborhood of it.

3.2 Definitions

We now give a number of definitions relevant to the specification of the channel

access protocol. Some of these definitions relate to the functions through which a

node acquires information about the activity of neighboring nodes.

Link: We say that a link exists from node k into node n if there is radio connectivity

from k to n. Node k is called the source, and node ni the destination, of the link.

A link is defined by the ordered pair whose first component is the source node and

the second component is the destination node.

Active link: A link is said to be active whenever the source node of the link is

transmitting a packet to the destination node. (Note that, in general, whenever a

packet is transmitted over a link it will be heard at nodes other than the destination

node of the link, due to the broadcast nature of the channel, unless directional

transmission is employed.)

Active node: A node is defined to be active whenever any of the links that em-

anate from that node is active. Equivalently, the node is active whenever the local

transmitter is transmitting a packet.

Locking: Under certain protocols, a receiver at a node may want to transmit a packet

even in the presence of activity from the part of neighboring nodes. This behavior

makes sense, for example, if there is a good indication that no useful data would

be obtained by listening to that activity, either because of interference, or because
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no data is intended for the node in question. On the other hand, a node might

not want to transmit in a situation where potentially good data can be acquired

by listening to the channel. We formalize this idea under the notion of locking.

We say that a receiver is locked onto a packet whenever a packet transmission

is present at the receiver, and the receiver does not have a reason to "believe"

that it is acquiring useless data. Unfortunately, given the half-duplex nature of the

packet radio communication, it is not possible to implement in packet radio systems

collision-detection features such as those possible in a broadcast bus, and thus the

only circumstances in which a receiver can "refuse" to listen to useless data are (i) in

the case of a transmission of which the receiver was not able to correctly receive the

initial part (possibly containing the synchronization symbols, source/destination

information, etc.), and (ii) in the case that the transmission is not intended to it.

It would be desirable to recognize the situation depicted in Figure 2.1a, where a

packet that is captured by a receiver is later overlapped by a weaker packet that

does not cause bit errors, but whose data continues beyond the end the first packet

and can thus be mistaken as belonging to it. A partial capability to detect this

situation can be provided if the packet headers contain a "length" field that the

receiver can use to detect the end of a packet. After receiving the specified number

of characters, a receiver will know that any further data does not belong to the

packet being received, and will be able to transit to the unlocked state. Errors in

the reception of the header will cause the failure of the above process. However, if

the header length is much smaller than the average packet length, the probability

of erroneous decision due to incorrect reception of the length field is small.

In a narrowband system, assuming no capture effects, a receiver will have to

find an idle channel prior to locking. In a spread-spectrum system the receiver has

to synchronize to and receive the preamble of the packet free of errors. This can

be done even in the presence of other overlapping transmissions, with a probability
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which depends on the correlation properties of the codes employed. In a spread

spectrum system there is another mechanism that a receiver can use to determine

the end of a desired packet. This mechanism consists of monitoring the codes

used. If the interfering signals do not use the same codes (which would be the

case with bit-changing codes, or with bit-homogeneous transmitter-assigned codes),

or use the same codes with a bit timing separation larger than the width of the

"vulnerability window" of the codes used, the receiver can determine the end of the

desired packet by observing the decrease in energy at the output of the integrate-

and-dump detector circuit.

Code sensing: Code sensing refers to the determination of whether, at a given time,

some transmission using a given code sequence is present at a receiver. In the case of

bit-homogeneous codes, code sensing can be achieved by the use of filters matched

to the desired waveforms. In the case of bit-changing code assignments code sensing

is not generally possible, unless one knows exactly the starting time of the desired

code sequence.

Activity sensing: Activity sensing refers to the ability of a node to determine

whether a given link or group of links is active. In a narrow-band system, car-

rier sensing allows a node to determine whether some neighboring node is active;

by directional carrier sensing it is possible to determine whether a given neighboring

node is active. Carrier sensing, by itself, does not allow a node to determine if a

given neighboring link (i.e., a link whose source node is a neighbor of the node in

question) is active. This goal can be achieved by more sophisticated and expensive

means, such as a separate signaling channel, in principle even possessing a con-

nectivity different from that of the data channel. In spread-spectrum systems, the

characteristics of activity sensing depend on the particular system characteristics.

In the case of systems with uniform code assignment and bit-homogeneous codes,
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activity sensing can be done by code sensing, and possesses the same properties as

carrier sensing in a narrowband system. In a system with a receiver-directed code

assignment and bit-homogeneous codes, activity sensing can be done by simulta-

neous sensing of the codes of all receivers within a two-hop radius. In this way it

is possible to determine whether some neighboring node is active. By directional

sensing, it is possible to determine whether a given neighboring node is active, and

what the destination is. In transmitter-assigned bit-homogeneous systems, activ-

ity sensing can be done by sensing the codes assigned to nodes within a one-hop

radius. Furthermore, the identity of the active node(s) can be determined by ob-

serving which codes are present. In the case of systems with bit-changing codes,

activity sensing is not possible, due to the difficulty of performing code sensing.

In such systems, a scheme involving a separate signaling channel can be used to

achieve activity sensing.

Busy tone: Some channel access protocols assume the existence of a busy tone

signal, which nodes send on a separate channel whenever some subset (defined by

the particular access protocol considered) of their neighboring links is sensed active.

In this wk-~ a node can obtain information about the activity of neighbors which

are two radio hops away. A busy tone channel can be regarded as a particular case

of the separate signaling channel referred to in connection with activity sensing.

3.3 Protocol Classification and Definitions

We now give the definitions of a number of channel access protocols that are

commonly considered for use in a radio environment. These protocols can be divided

into groups according to different aspects of their operation. One such division

concerns whether a node which is locked onto a packet is allowed to abort the
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reception in order for a transmission to take place. We call a protocol disciplined

if this behavior is not allowed to take place, and undisciplined otherwise. Another

division concerns whether preemption is allowed, that is, whether a transmitter can

abort the transmission of a packet in order to start the transmission of a new packet.

We only consider protocols in which preemption is not allowed. Still another division

concerns the nature of the information that is required by the protocol operation.

We divide the protocols considered in this work, which are the ones more commonly

considered for packet radio applications, into three groups: (i) ALOHA protocols,

(ii) activity sensing protocols, and (iii) busy tone protocols.

3.3.1 ALOHA Protocols

The decisions made at a node by the protocols in this family depend only on

the state of the node itself. We have basically two protocols in this group:

Pure ALOHA (ALOHA): The source node of a link is allowed to become active

whenever it is not transmitting a packet (even if at the time the receiver at the

node is locked onto a packet).

Disciplined ALOHA (D-ALOHA): The source node of a link is allowed to transmit

whenever it is neither transmitting nor locked onto a packet.

ALOHA was the first protocol considered for packet radio, in the ALOHA packet

radio system ([Abra7O]). However, since this was a centralized full-duplex system,

with separate radio cha~nnels for the inbound and outbound traffic, there was no

distinction between the disciplined and undisciplined versions of the protocol. This

distinction only was deemed necessary for multihop, applications, when half-duplex

operation of the stations is considered. In these circumstances, the undisciplined

version of the protocol has the undesirable feature that it allows the reception of

a possibly successful packet to be aborted in order for a scheduled transmission
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to take place. The disciplined version corrects this problem. The minimal coordi-

nation among the stations in their transmission attempts results in relatively low

throughputs for these protocols in a zero-capture fully-connected environment, and

this fact motivated the introduction of some of the protocols in the next class.

3.3.2 Activity Sensing Protocols

The decisions made at a node by the protocols in this class depend only on the

state of the node, and on the activity of neighboring transmitters (as determined

by an activity sensing mechanism).

Carrier Sensing Multiple Access (CSMA): The source node of a link is allowed to

transmit whenever neither the node itself nor any neighboring nodes is active.

Destination Code Sensing Multiple Access (DCSMA): This protocol assumes a

spread-spectrum environment in which receiver-assigned bit-homogeneous code se-

quences are used. A transmission over a link is allowed if, at the scheduled time, the

source node of the link is neither active nor locked onto a packet, and the presence

of the code assigned to the destination node is not sensed.

The last protocol can also be applied in an environment of uniformly assigned

bit-homogeneous code sequences, in which case it reduces to CSMA. As mentioned

in connection with the feasibility of activity sensing, the protocols of this class do

not fit naturally in the framework of a system with bit-changing codes.

OSMA improves dramatically upon the low throughput of ALOHA in a cen-

tralized fully-connected environment. Consider, however, a situation where several

transmitters, which can not hear each other, can all be heard by the same receiver

(hidden terminals). CSMA will not help in this case coordinate the transmission at-

tempts of the different transmitters in such a way that at any time only one of them
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is trying to access the receiver. The protocols in the next class were introduced as

a solution to this problem.

3.3.3 Busy Tone Protocols

The protocols in this family assume the existence of a separate busy tone chan-

nel. Whenever a new packet starts transmission, a subset of the nodes that can

hear that transmis sion sends a signal on the busy tone channel in order to insure

that only one transmitter at a time tries to access the receiver to which the packet

is destined. In the Busy Tone family of protocols, a node is prevented from trans-

mitting whenever it senses activity of neighboring nodes, or it senses a signal on

the busy tone channel. Different protocols result from different choices of the set of

nodes that set the busy tone.

Conservative Busy Tone Multiple Access (C-BTMA): Whenever a link becomes

active, all the neighbors of the source node of the link set the busy tone.

Under C-BTMA, all nodes within one hop of an active transmitter set the busy

tone, and all nodes within two hops of it are blocked. In this way, the protocol

creates a "buffer zone" around the destination receiver in such a way that, in an

environment of zero propagation delay, no two transmissions are ever simultaneously

present at the same receiver, thus affording collision-free operation. One can argue,

however, that an excessively large number of nodes is blocked by the protocol.

Indeed, in the situation of Figure 3.1a, consider that node C transmits, say, to node

A. Nodes A, B, D, and F will sense C's activity, set the busy tone, and be blocked.

In addition, node E will also sense the busy tone emitted by the other nodes, and

be blocked. However, node E, if allowed, could transmit to both B or G without

any packet overlaps at a receiver resulting therefrom. Thus one is led to consider
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Fig. 3.1 Link blocking in a network with Busy Tone protocols
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the situation where only the destination node of the link that becomes active sets

the busy tone (Figure 3.1b), as implemented in the following protocols.

Idealistic Destination Busy Tone Multiple Access (ID-BTMA): Whenever a link

becomes active, the destination node of the link sets the busy tone.

This protocol assumes tOat the receiver at a node can determine whether an

intended packet is being transmitted to it, even if the packet was not locked onto.

This information can be obtained in a bit-homogeneous receiver-directed system by

code sensing, but is not otherwise directly available in any of the other forms of

signaling discussed (hence the designation Idealistic). Another Busy Tone protocol

results from a modification of ID-BTMA along these lines. Before giving its defi-

nition, let us note that collisions can occur under ID-BTMA. Referring to Figure

3.1b, we see that node E is not blocked after the start of C's transmission to A.

If E then transmits to F there will be an overlap of packets at F, since F can

hear C's transmission. For signaling schemes such as narrowband the packet will

be lost with high probability. However, it is easy to see that ID-BTMA guarantees

a reception free of collisions after a packet starts being successfully received. We

now introduce a modification of ID-BTMA in which a node only sets the busy tone

after locking onto a packet.

Locked Destination Busy Tone Multiple Access (LD-BTMA): Whenever a link be-

comes active and the destination node successfully locks onto the packet, the desti-

nation node sets the busy tone.

Some more elaborate Busy Tone schemes can be envisioned using coded busy

tone signals to allow the identification of the originator of the busy tone. A discus-

sion of these schemes, which we shall not consider here, can be found in IToba85].
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3.4 Summary and Conclusions

We discussed in this Chapter channel access protocols. Section 3.1 discussed

the kind of information required by a channel access protocol. Section 3.2 gave

a number of definitions relevant for the specification of channel access protocols.

Among these are the notions of lock-ing, code sensing, and activity sensing. The

feasibility of activity sensing was discussed, and it was concluded that activity sens-

ing is easy to accomplish in narrowband systems or in spread spectrum systems

with bit-homogeneous codes, but that it is otherwise difficult for other types of

signaling. Section 3.3 classified the protocols commonly considered for packet ra-

dio operation in three classes, according to the nature of the information required

for the decisions they make at a node: (i) ALOHA protocols, (ii) activity sensing

protocols, and (iii) Busy Tone protocols. ALOHA protocols use information con-

cerning only the state of the node itself; activity sensing protocols use information

concerning the state of the node in question and of its immediate neighbors; and

Busy Tone protocols use information concerning the state of nodes two hops away

from the node in question, obtained by means of a separate (busy tone) channel.

The implementability of each of these protocols was seen to be subject to the same

restrictions, in terms of the signaling method used, as the activity sensing functions

required by the protocol.



Chapter 4

THE ANALYTICAL MODEL

We introduce in this Chapter a model for the analytical evaluation of throughput

in packet radio systems. Section 4.1 introduces the elements that specify a packet

radio network: topology, channel access protocol, and capture mode. It then defines

formally the classes of channel access protocols and capture modes considered for

analysis. Section 4.2 introduces the network operating model that is considered in

the remaining part of this work, and discusses the validity of its assumptions for

the purpose of capacity analysis.

4.1 Model Elements

4.1.1 Topology and Traffic Requirements

We consider a packet radio network with N nodes, numbered 1, 2, .. ,N, which

utilize a single radio broadcast channel. The topology of the network is given by a

hearing matrix H = [hii], where

(1 =[ if jcan hear i

0 otherwise.
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Thus each nonzero entry hij in the hearing matrix corresponds to a directed radio

link in the network from node i to node j, and vice-versa. We call node i the source

and node j the destination for that particular link. This "hard" model for the

hearing is a simplification of the situation found in a real system, in which there

exists a continuum of grades between full hearing and no hearing. However, this

representation does not detract from the generality of the model, since we shall

incorporate later parameters that represent the quality (in terms of the probability

of bit error) of the network links.

The traffic requirements for each link are assumed to be dictated by the end-to-

end traffic requirements together with a static routing function. It may happen that

for some links the required traffic is zero. We refer to these links as unused links,

and to all other links as used links. As in Section 3.2, we say that a used link is

active whenever a transmission is taking place over that link, i.e., when the source

node is transmitting a message intended to the destination node on that link. We

say that an active link is locked onto whenever the destination node of the link is

locked onto the packet that is being transmitted. We consider all used links to be

numbered 1, 2,..., L, and we let C A (1, 2,..., L). For link i E C, we denote by

s(i) its source node, and by d(i) its destination node. Alternatively we represent

link i by the ordered pair (s(i), d(i)).

4.1.2 Channel Access Protocol

Section 3.1 presented a definition of a channel access protocol that is too general

to be useful for analysis. We shall restrict our attention to a class of access protocols

that will allow analytical tractability. This class is still general enough, however, to

include most protocols of practical interest in packet radio applications, in particular

those defined in Section 3.3.
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The class of access protocols considered in this thesis is defined by the following

two conditions:

1. State description: The decisions made by the protocol use only information

concerning which links are active and which links are locked onto.

This condition means that a sufficient description of the state of a given node k

consists of the information on whether the node is idle, transmitting a packet (and

over which link), or locked onto a packet (and over which link the packet is being

received). A convenient way of representing this information is by having the state

Xk(t) of node k at time t be defined by

0, if k is idle,

Xk(t) = +i, if link i E E(k) is active, (4.1)

-j, if link j E V(k) is locked onto,

where E(k) is the set of links that has k as source node (i.e., the set of emanating

links), and V(k) is the set of links that has k as a destination node (i.e., the set of

incoming links).

2. Structure of blocking: For each link i there exist two sets of links Ba(i) and 81(i),

such that link i is blocked if and only if some link in B.(i) is active, or some

link in Bj(i) is active and locked onto. Formally, this condition is equivalent to

requiring that the boolean function B(') which describes the blocking of link i

(see Section 3.1) have the form

N

A , X2 ,...,XN) = V (xk B.(i) V (-Xk) ),
k=i

where Xk is defined by Equation (4.1).

In condition 2., the sets B,(i) and Bj(i) are specified by the channel access protocol.

Since there are several possible choices for 1(i) leading to the same access protocol,
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we further adopt the convention that Bj(i) is such that BI(i) n B(i) = I. In other

words, BI(i) is formed by those links that block i whenever they are locked onto,

but do not block i when they are active and not locked onto.

A subclass of the class of protocols defined by conditions 1. and 2. above pos-

sesses special analytical properties, and will be studied separately. These protocols

lead to a form of decoupling between the description of the activity of the transmit-

ters and the activity of the receivers. We designate this class by V, and refer to the

corresponding systems as decoupled systems. This class is defined by the following

condition:

Protocol class V: A protocol is of class V if the decisions made by the proto-

col use only information concerning which links are active (or. equivalently,

if B(i) = 4'). Formally, this condition is equivalent to having

N
BE(XI,X 2, ... ,XN)= V ( Xk EBa(i)).

k=1

As an example, ID-BTMA is in class V. Indeed, in ID-BTMA the knowledge that

link i is active allows one to infer which nodes or links are blocked: all nodes that can

hear i are blocked, and all nodes that can hear the busy tone sent by the destination

node of link i are also blocked. Other protocols in V are ALOHA, CSMA, and C-

BTMA. LD-BTMA is an example of a protocol not in V. In LD-BTMA, whenever

link i is active, all nodes that can hear i'6 source are blocked, but the nodes that

can hear i's destination are blocked only if this node set the busy tone, that is, only

if the destination node locked onto i's transmission. Another protocol not in VD is

D-ALOHA.

For protocols of class V, we say that link i E C blocks link j if, whenever link

i is active, the protocol used does not allow a scheduling point of link j to result
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in an actual transmission. It is to be noted that if link i blocks link j, it does not

necessarily follow that link j blocks link i. An example of this situation is provided

by ID-BTMA in a 4-node chain, as described in Example 5.1.7.

Let D be a set of links in L. We say that D blocks link i E Z - D if there exists

some link i E D which blocks j.

4.1.3 Capture Mode

In this study, we consider the operation of the receivers to be described by the

following model:

1. The length of the preambles is small enough, compared with the length of the

packets, to be neglected.

2. The receiver at node n, when idle (i.e., not locked onto a packet), will listen for

the preambles of packets transmitted by any of the links in the network, and

will successfully lock onto the preamble of a packet from incoming link j with

probability P.(D; j), independently from trial to trial. Here D is the set of

links which are active just before the transmission of link j's packet starts, and

'Pn(D; j) equals the average probability of success for the system with preambles

of nonzero length, given D and j, and averaged over all possible evolutions of

the system during the preamble's transmission time. As long as the length of

the preamble is much smaller than the average rescheduling interval and the

average packet length one can consider Pn(D~J), as an approximation, to be

independent of these parameters.

3. If the preamble is successfully received, the receiver remains locked onto that

packet until the end of its transmission, except if, in the meanwhile, the node

to which the receiver belongs switched to transmit mode.
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4. While the receiver at node n is locked onto link i's packet, bit errors occur at

the output of the receiver at a rate cn(D; j), where D the set of active links.

5. If the preamble is not successfully received, the receiver will remain idle, search-

ing for a new packet to lock onto, and the whole process is repeated from step 2.

6. A packet is successfully received if it is successfully locked onto and the data

portion is received free of errors.

By appropriately specifying the families of parameters *Pn(D; j) and cn(D; j)

we can model a wide variety of capture situations. As special cases of capture that

can be represented in this way we have the following two cases.

Zero capture: Under zero capture, an idle receiver is only able to lock onto a new

packet if no neighboring nodes are active. After locking onto a packet, the receiver

will receive the packet successfully if and only if, during its reception, no neighboring

nodes of the receiver ever become active.

Idealistic perfect capture: Under idealistic perfect capture, an idle receiver is only

able to lock onto a new packet if no neighboring nodes are active. After locking

onto the packet, the receiver will receive the packet successfully, independently of

the activity of the neighboring nodes.

Zero capture had already been discussed in Chapter 2 in connection with narrow-

band systems. Idealistic perfect capture corresponds to the limit case of a system

with uniformly assigned bit-homogeneous codes, with the same preamble and data

portion codes, as the number of chips per bit goes to infinity.

A subclass of the class of capture modes defined by conditions L.-6. above will

be seen to lead to a simplification in the throughput computations. This class,

designated by C,, is defined by the following condition:

Capture class C,: A capture mode belongs to class C, if, for any link j, the
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availability of the destination receiver to lock onto a packet transmitted on

that link is completely determined by the set D of links that are active just

before the transmission of the packet starts.

An example of a capture mode that belongs to class C, is zero capture. Under zero

capture, the knowledge that a neighboring node of the destination of link j is active

at the time link j starts transmission of a new packet assures that the packet will

not be locked onto, either because the receiver is locked onto a previous packet and

thus not available for the new one, or the receiver is idle, but also unable to lock

onto a new packet given the definition of zero capture. Conversely, the knowledge

that all neighboring nodes of a given destination node, and the node itself, are idle,

obviously implies that the destination receiver is free to lock onto a new packet.

Similarly, it is easy to see that idealistic perfect capture also belongs to class C,. As

an example of a capture mode not belonging to class C,, consider the case where

receivers can lock onto new packets even in the presence of neighboring activity.

Then the set of active nodes by itself does not give information on whether or not

the receiver is available to lock onto a new packet, since additional information is

required about whether or not the receiver is already locked onto some other packet

at the time the new packet starts.

4.2 Network Operating Assumptions

Since the entire packet radio network operates using a single radio frequency,

each node in the network has one transmitter, but can in general have more than

one outgoing link. We consider that each outgoing link at a node has a separate

queue for the packets to be transmitted on it and that the transmitter is shared

among all queues at that node. It is assumed in this study that neither preemption
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nor priority functions are supported at the nodes. To avoid repeated interference

between transmissions in the network, transmission requests for the various queues

at a node are scheduled according to random point processes, one for each queue.

Consider a point in time defined by the point process for some link i. If the

queue is empty, this scheduling point is ignored. If the queue is nonempty then a

packet in the queue is considered for transmission. The transmission may or may not

take place depending on the status of the source node (namely, idle, transmitting

or receiving), the channel access protocol in use, and the current activity in the

network. If the transmission is inhibited, or if the transmission is undertaken but

unsuccessfully (due to a colision at the intended destination), then the packet in

question is reconsidered at the next scheduling point in time. Otherwise (i.e., the

transmission is successful), the packet is removed from the queue, and the same

process is repeated at the next scheduling point for that link.

We present now the system assumptions considered in the analytical model.

These are identical to the assumptions introduced by Boorstyn and Kershenbaum

in [Boor8O].

1. Infinite queues: The queues at each outgoing link have infinite storage capacity.

2. Heavy traffic: At each scheduling point of the scheduling point process there is

a packet in the queue for consideration.

3. Acknowledgments: Instantaneous and perfect acknowledgments.

4. Delays: Zero propagation and processing delays.

5. Scheduling processes: The rescheduling point process for link i, i E 'C, is Poisson

with rate \i (Ai > 0), and independent of all other such processes in the network.

6. Packet length distribution: The transmission time of the messages transmitted

over link i is exponentially distributed with mean l/pi (pi > 0).
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7. Redrawing of packet lengths: The transmission time of the messages transmit-

ted over link i is redrawn independently from the corresponding distribution

each time the message is transmitted.

The above assumptions discard, for reasons of tractability and as discussed in

Section 1.2, some of the aspects of the operation of a packet radio system. For the

purposes of capacity analysis, however, the resulting model represents the essential

aspects, in particular the two main goals (i) action of the channel access protocol,

and (ii) effect of the capture mode. Furthermore, assumptions L.-7. do not put

excessively artificial requirements on the system. Assumptions 1. and 2. fit naturally

in a capacity analysis framework. By introducing assumption 3., we obtain upper

bounds on the performance of the system with nonideal acknowledgments. More

importantly, it should be possible to infer the ordering of the protocols based on

their relative performance in the system with nonideal acknowledgments from the

results obtained for the ideal case. The first part of assumption 4. discards the effects

resulting from making local decisions based on delayed information. However, those

will be second order effects as long as the propagation delays are much shorter than

the average times that the system spends in a given state, which will be the case

if the propagation delays are much smaller than the average packet durations and

the average rescheduling delays. In a typical packet radio system, with ranges of

the order of 20 kin, bits of duration l0jps each, and packet lengths of the order of

1000 bits, the ratio of the propagation delay to the packet duration is of the order of

7 x 10-3, which we neglect. Assumption 5. results from the previous assumptions, in

particular 2., 3., and 4., by considering a scheduling algorithm which at given times

looks at the packet at the head of the queue, and schedules it for transmission

after a random exponentially distributed scheduling delay with parameter Ai for

link i. The times at which the algorithm looks at the packet at the head of the

queue are (i) at the end of a packet transmission, or (ii) at the time of an already
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existing scheduling point. In case (i), if the packet was successful (which is known

instantaneously, according to 3.) then the new packet at the end of the queue is

scheduled. Otherwise the same packet is rescheduled. In case (ii), a transmission

of the packet at the head of the queue is attempted. The transmission will be

undertaken if so allowed by the channel access protocol. Otherwise the packet is

rescheduled for later transmission. From this process, clearly a Poisson rescheduling

process results. Assumption 6. reflects a particular choice for the distribution of

the length of the packets on the channel which will allow tractability. It will be

relaxed later in Chapter 7. Assumption 7. deserves some remarks. In systems

where the probability of success of a message depends upon its length (such as

a zero capture system), larger packets require on the average a larger number of

transmissions than do shorter packets. As a consequence, the random variable

representing the length of the packets present on the channel is stochastically larger

than the random variable representing the length of the successful packets; that

is, the graph of the distribution function of the former lies on or below the graph

of the distribution function of the latter. This effect had already been reported

by Ferguson in (Ferg77] where, in a single-hop system, it was studied what the

length distribution of the successful packets should be in order for a given length

distribution of the channel packets to result. In our case, as NviII be seen later, it

is possible, although computationally time-consumning, to take a brnilar approach,

by determining what the value of the pi's should be in order for the successful

packets to have the desired average length. It ivi!l not be possible, in general, to

enforce an a priori given length distribution. We shall not, however, perform those

computations. If the ratios of the average lengths of the successful packets to those

of the channel packets do not differ very much over the set of the network links, the

results derived should be a good approximation to those obtained by "tuning" the

p,'s to yield the desired average successful packet length. The model derived from
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the assumptions presented in this Section seems thus appropriate for the purpose

of capacity analysis.

4.3 Summary and Conclusions

We presented in this Chapter the analytical model to be considered in the

remaining part of this work. Section 4.1 defined formally the elements of the model:

(i) topology and traffic requirements, (ii) channel access protocol, and (iii) capture

mode. Sectirn 4.1.1 described the topology and traffic requirements by means of a

hearing matrix and a traffic matrix, respectively. Section 4.1.2 defined the class of

access protocols to be considered for analysis: all those protocols whose decisions

make use only of information concerning which links are active and which links

are locked onto. This class of protocols includes the Pure ALOHA, Disciplined

ALOHA, CSMA, C-BTMA, ID-BTMA, and LD-BTMA protocols. This section

further defined a subclass (designated as class V)) of the above class of channel access

protocols, for which the protocol decisions are based only on the state of the network

transmitters, and whose elements lead to a form of decoupling in the representation

of the network activity and in the evaluation of the network throughput. Examples

of protocols in this class are Pure ALOHA, CSMA, C-BTMA, and ID-BTMA.

Subsection 4.1.3 described the general capture model considered for analysis. Under

this model, a capture mode is described by (i) the (state-dependent) probability of

an idle receiver locking onto a packet destined to it, and (ii) the (state-dependent)

rates at which bit errors occur at a rectiver during the reception of a packet. Section

4.3 introduced the network operating mode! that is considered in the remaining

part of this work. The essential features of this model are: (i) a situation of heavy

traffic, where packets are always available for consideration at a scheduling point,
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(ii) Poisson rescheduling processes, (iii) exponential packet lengths, (iv) redrawing

of message lengths at each retransmission attempt, (v) instantaneous and perfect

acknowledgments, and (vi) zero propagation and processing delays. In this Section

we also discussed the validity of the model assumptions for the purpose of capacity

analysis, and concluded for their appropriateness.
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Chapter 5

DECOUPLED SYSTEMS

We present in this Chapter the analysis of the class of protoco:s for which the

protocol decisions are completely specified by the state of the network transmitters.

The protocols in this class lead to a form of decoupling between the description of the

activity of the receivers and the activity of the transmitters, and the corresponding

systems are referred to as decoupled systems. Examples of such protocols are Pure

ALOHA, CSMA, C-BTMA, and ID-BTMA. Section 5.1 presents a Markovian model

for the description of the transmitter activity. This model is a direct extension of

a model introduced by Boorstyn and Kershenbaum in [Boor80] for the analysis of

Carrier Sense Multiple Access. In this Section we characterize the state space of the

stochastic process describing the transmitter activity, derive the balance equations

for its steady-state probability distribution, and investigate the conditions under

which this distribution possesses a product form solution. The existence of a product

form solution is shown to be equivalent to symmetry in link blocking. In this Section

we also show that the product form solution is computationally NP-hard. Section

5.2 presents a Markovian model for the description of the activity of the receivers,

and derives the equilibrium equations of the corresponding stochastic process in a
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form that emphasizes the decoupling afforded by the class of protocols considered

in this Chapter. Section 5.3 presents the derivation of throughput measures from

probability measures and hitting times associated with the processes describing the

activity of the receivers and of the transmitters. This Section also presents the

derivation of the throughput equations for a four-node ring network, as an example

of application of the formalism developed in this Chapter.

5.1 Markovian Description of Transmitter Activity

In this Section we give the analysis of the transmitter activity under protocols of

class P. For this class of protocols, the set of active links contains all the information

needed for the protocol decisions. Thus, for the purpose of the description of the

protocol activity, we can take the state X(t) of the network to be the set of active

links.

Let the state of the system at time t be D E S, let i be any link not blocked

by D, and let j E D. Given the assumptions in Section 4.2, the time until the

next scheduling point of i is exponentially distributed with parameter Ai, and the

time to the end of the transmission over link j is also exponentially distributed

with parameter pi. Given that X(1) = D, and given the memoryless property of

the exponential distribution, the state of the system at time t + At is completely

determined, in a probabilistic sense, by the state of the system at time t, and

so {X(t)} is a continuous time Markov chain. In this next Section we study the

properties of this Markov chain.
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5.1.1 State Space

We now define the state space S for the Markov chain {X(t)}. Since X(t) is

the set of all links that are active at kime 1, S C 2 1. Given an access protocol and

its blocking properties, not all subsets of 4 may be in S.

Definition 5.1.1 S is the collection of subsets of f that the system can reach start-

ing from the idle state 4 (i.e., all links inactive) by any sequence of link activations

and deactivations.

Definition 5.1.2 A subset D = {11, 12,..., Q,} of C is said to be directly reachable

if there exists some permutation (li, 42,..., A.) of D such that lij is not blocked by

(til, 42 ... li-), = 2,..., n. That is, D is directly reachable if it can be reached

by only activating the links in it, in some order, starting from the idle state 4.

Lemma 5.1.3 If a subset D= {11,12, .. , In} is directly reachable, then any subset

D' C D is also directly reachable.

Proof: Let (l4k, . - , Ii.,) be an ordered sequence of activations which allows D

to be reached. The ordered subsequence in (i,, 14),... , I,) corresponding to links

in D' is a sequence of activations which allows D' to be reached directly. I

Proposition 5.1.4 The state space S consists of 4 and all subsets D C C that are

directly reachable.

Proof: Clearly a set D which is directly reachable belongs to S. To prove the

converse, we let D E S be some subset that is reached via some sequence of states

Do, D1,..., Din, with Do = 4 and Dm = D, due to link activations and deactiva-

tions. (Note that since the process {X(t) : t > 0} is such that no two events can

occur at the same instant, then IDkI = IDk-I ± 1 for all k = 1,2,..., M). Since the

first transition out of Do = 4 must be an activation, there is some index r < m such

66



that D, is reached directly. Consider Dr+l. If D,+l -Dr U {i} for some i, then

D,.+ is clearly directly reachable. If D,+, = D, - {j} for some j, then D,+, is also

directly reachable, by Lemma 5.1.3. Applying the same argument to the remaining

steps, we guarantee that D is directly reachable. I

According to Proposition 5.1.4, one can generate the state space with the al-

gorithm below. This algorithm can however be very inefficient. More efficient

algorithms shall be presented in Chapter 8.

begin

s :={};
f- := (1, 2,.. ., L)

for k := 0 to L - 1 do

for every D E S such that IDI = k do

for every I E C - D do

if I is not blocked by D, then add D U {l} to S;

end.

Throughout the analysis we assume a fixed ordering of the state space S, according

to which the rows and columns of all the vectors and matrices to be considered are

indexed.

Remark 5.1.5 Given an access protocol and some state D E S, it should be noted

that not all zequences of activations of its elements will necessarily allow D to be

reached from 0k. For example, consider the 4-node chain of Figure 5.1 with nonzero

traffic requirement over links 1 and 5 only, and the ID-BTMA access protocol. State

{1, 5} is an example of a state for which the order of activation is relevant. This

state is reachable by the perm,:tation (1, 5), but not by the permutation (5, 1).

Remark 5.1.6 Recall that C is the set of all used links and thus \i > 0 for all

i E C. Accordingly every state can be reached from the empty state in a nonzero

67



(D 2 O-4 0-6 0

Fig. 5.1 A 4-node chain

period of time with nonzero probability. Similarly, the empty state can be reached

from any other state in a nonzero period of time with nonzero probability (since

pi > 0 for all i E £). It then follows that all states communicate and the resulting

Markov chain is irreducible.

5.1.2 The Equilibrium Equations

As noted above, the Markov chain {X(t) : t > 0) is irreducible. Since the

state space is finite, the chain is then positive recurrent and ergodic. Thus the

existence and uniqueness of a stationary distribution is ensured. We denote by

{p(D): D E S} the stationary probability distribution, and let p = (p(D)E be
\ DES

the row vector of the steady-state probabilities.

Let D be a set of links in C. W\e define Uo(D) to be the set of all links in C - I)

which are not blocked by 1). Let the state of the system at time t be D E S, arid

let i E U(D) and j E D. Given the assumptions in Section 4.2, the time to the

next scheduling point of i is exponentially distributed with parameter A,. and the

time to the end of die Ira rstiision over link j is also exponent ially (list ril,uted wit h

parameter /tj. hI'hs, givei that N(1) = D. link i E V(D) can become active at a

rate Ai, and link j E D cani become inactive at a rate it,. The state of the syste|II
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Fig. 5.2 Typical transitions to and from a state

at time t + At is then given by

Du {i}, i E U(D), with probability AiAt + o(At)

X (t + At) = D- {j, j E D, with probability p.At + o(At)

D, with probability 1- ( 1 Ai + Epj)At +o(At)
iEU(D) ,ED

This equation defines the transition rates which we need for writing the equilibritlm

equations. Before doing so we have to introduce some further notation. For each

D E S, let Af!(D) be the set of all links i V D such that D U {i} E S. Clearly

M(D) D I'(D). Note however that it is not neces:..rily true that .(I(D) = l"(1)).

(See Example 5.1.7 below.) Let J(D) to lie the ., of all links j E D such that

j is not blocked by 1) - {j}. Le.. such that j E '(D - {j}). Clearly, J(D) C D.

Here too, in general we have .I(/)) 9 1). as is also illustrated in Example 5.1.7.

With these defirnitions., a sketh i of lhe state-t ransit ion-rate diagram for state D and

the transitions to and from its neighbors can be seen in Figure 5.2. An equivalent
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{5}

L 5

Fig. 5.3 State Space for Markov chain of Example 5.1.7

description is given by the transition-rate matrix ; = [q(D, D')]D,D'ES' where

'Ai, if D'= DU {i}, i E U(D)

]11, if D'= D-{j}, j E D

q(D,')- -D) Ai+ i' =D

10, otherwise

The equilibrium equations take then the form

p(D) [E Ai +ZE pji= E p(D -{fj}) A+ ~j p(DUi}) i, DE S
LiE (D) jED jEJ(D) iEM(D)

(5.1)

Example 5.1.7 Consider the 4-node chain of Figure 5.1 with nonzero traffic re-

quirement over links I and 5 only. and the II)-BTM A protocol. The corresponding

state-transition-rate diagram is shown in Figure 5.3. From the definitions we have

that J({l,.5}) = { 5)}, (({5}) = 0, and M({5}) = {1}. These are examples of states

1j for which M(D) - U'(D). or J(D) $ I).
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5.1.3 Reversible Markov Chains and Product Form Solutions ([Kel179])

Definition 5.1.8 A continuous time stochastic process {X(t)} defined in I =

(-oo, +oo) is said to be reversible if for any 7 E 1, integer n, and tj _ 2 _ ... :_ tn

in I, (X(tI),X(t 2),...,X(t,)) has the same distribution as (X(T - ti),X(T -

t2,--- T -tn)).

For the particular case of Markov chains, reversibility has a simple characteri-

zation in terms of the transition rates and steady-state distribution, as given in the

following proposition, whose proof can be found in [Kell79].

Proposition 5.1.9 A stationary continuous time Markov chain is reversible if and

only if there exists a collection of positive numbers {y(D) : D E S}, summing to

unity, such that

7(DI) "q(Dz, D 2) = 7(D 2) q(D2 , D1) (5.2)

for all D1 , D2 E S, and where q(Di, Di) is the rate of transitions from Di to Dj.

When such a collection exists, it is the stationary probability distribution.

An equivalent necessary and sufficient condition for reversibility (called Kol-

mogorov's criterion) is that, for any finite sequence of states D1 , D 2, ... , D, E S,

the transition rates satisfy

q(DI, D 2 ) q(D 2 , D3 )'. q(D,, Di) = q(D1 , D.) q(D,, D-j)... q(D2, D1 ). (5.3)

Suppose we are given a reversible Markov chain with state space S. Let Do be

a fixed state and D a generic state in S. Let Do, Di,..., Dm be any sequence of

states in S, with D,, = D, such that betwten any two consecutive states of the

sequence there exist nonzero transition rates. By repeated application of (5.2) it is
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easy to see that the steady-state probability distribution for such a Markov chain

satisfies

p(D) = p(Do) kn q(Dk_., Dk) (5.4)piD)-L. io)i q(Dk, DL.-1)"

A solution with the form of (5.4) is called a product form solution. It is immediately

seen that if the steady-state solution satisfies (5.4), then (5.2) is automatically

satisfied for all D 1, D2 E S. Thus

Proposition 5.1.10 A stationary continuous time Markov chain {X(t) : t > 0}

possesses a product form solution for the steady-state probability distribution if

and only if it is reversible.

5.1.4 Criterion for the Existence of a Product Form

We use here the results of the previous Section to determine the conditions on

the access protocol, network topology, and traffic requirements under which the

resulting Markov chain is reversible, and hence the global balance equations (5.1)

have a product form solution.

Lemma 5.1.11 U(D) M(D) for all D E S if and only if J(D) = D for all D E S.

Proof: We know already that J(D) C D and U(D) C_ M(D). To prove the desired

equalities we only need to prove the reverse inclusions. Assume that U(D') - M(D')

for all D' E S. It is evident that J(Ob) = 0. Consider now any D E S, D 0 4. For

each j E D, by definition j E M(D - {j}). Since by hypothesis U(D - {j}) =

M(D - {j}), then j E U(D - {j}). But this just means that j E J(D). Thus

D g J(D), for all D E S. Conversely, assume that D' = J(D') for all D' E S. Call

a state maximal if M(D) = 4. Since U(D) C M(D), for maximal states it is true

that U(D) = M(D). Let now D E S be a non-maximal state, and j E M(D). By

hypothesis J(D U {j}) = D U {j}, which in particular implies that j is not blocked

by D, and thus that j E U(D). Hence M(D) g U(D). $
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Proposition 5.1.12 The Markov chain {X(t) : t > 0} is reversible it and only if

D =J(D) (5.5)

for all D E S (or, equivalently, U(D) = M(D) for all D E S).

Proof: Assume that the Markov chain is reversible. Clearly (5.5) holds for D 4.

Consider now D E 5, D # 'A, and j E D. From (5.2) we have that

p(D) -q(D, D - {j}) = p(D - {j}) q(D - (j}, D).

Since q(D, D - {j}) = pi > 0 and p(D) > 0 for all D E S, this last equation

implies that q(D - {j},D) > 0. But since q(D.- {j},D) can only be either 0 (if

j 0 J(D)) or Aj (if j E J(D)), we necessarily conclude that q(D - {j}, D) = ,j

and j E J(D). Then D C J(D) for all D E S, and consequently D = J(D) for

all D E S. Conversely, assume that J(D) = D for all D E S. We now show that

{y(D) : 7(D) = 70 fliED .. , D E S}, with 70 chosen so that EDES -(D) = 1, is a

collection of numbers that satisfies the conditions of Proposition 5.1.9. Let DI, D2

be any two states in S. Assume first that they are of either the form D, = D,

D2 = D - {j}, or the form D, = D - {j}, D2 = D, for some D E S and j E D.

From the choice of 7 (D) we have

-t(D) = {(D - j}).Jpj

The transition rates between these two states are q(D, D - {j}) = p and, from the

assumption J(D) = D, q(D - {j}, D) = Aj. Thus, in this case,

7 (Dj)q(DiD 2 ) -(D2)q(D2, DI).

For any other choice of D, and D 2, q(DI,D 2) = q(D 2,DI) = 0, and

-t(D1 )q(D 1 , D2) = y(D2)q(D 2, D1 )
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Fig. 5.4 Portion of a nonreversible chain

is trivially verified. Thus (5.2) holds for all D 1, T, 2 E S, and {X(t) i > 0} is

reversible, by Proposition 5.1.9. 1

Proposition 5.1.13 (Criterion for the existence c, a product form-exponential

packet length distributions) A necessary and sufficient condition for a channel

access protocol, together with a given network topology and traffic requirements, in

a system with exponential packet lengths, to have a product form solution is that,

for all pairs of used links i and j, link j blocks link i whenever link i blocks link j.

Proof: We will prove the equivalence between the condition stated in the above

criterion and the condition that J(D) = D, for all D E S.

(a) J(D) = D, for all D E S.

Assume that link i blocks link j. If j does not block i, we will have the situation

depicted in Figure 5.1 in which j E {i,j} but j € J({i,j}), providing an instance

of a state D for which J(D) $ D, which is a contradiction. Thus j blocks i.

(b) There exists D such that J(D) i D.

Since J(D) C ) and J(D) i D, there exists j (z D such that j is blocked by

SD - {jl. Let i E D - {j} be sonic link blocking j and define D' = {i,j}. Since

D' C D then, by Lemma 5.1.3 and Proposition 5.1.11, D' belongs to S, and )' can
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be directly reached by activating links i and j in some order. By hypothesis i blocks

j, and so D' has to be directly reachable from {j}. Thus j does not block i. *

Proposition 5.1.13 implies that, in a reversible chain and for any state D E S,

any order of activation of the links in D allows D to be reached directly from state

qS, and thus the situation depicted in Remark 5.1.5 does never occur.

For a reversible chain the stationary probability distribution is given by (5.4).

From the particular form of the transition rates we have

p(D) = p(-) i A (5.6)
iED Ai

for all D E S. We can ask if there can exist protocols for which the corresponding

Markov chain {X(I) :t > 0} is not reversible, and yet the steady-state probabilities

have the form (5.6).

Proposition 5.1.14 (5.6) is a solution of the global balance equations (5.1) if and

only if

o l ifD = J (D ) 
(5 .5)

for all D E S (or, equivalently, U(D) = M(D) for all D E S).

Proof: Assume that D = J(D) for all D E S. By Proposition 5.1.12, {X(t)

t > 0} is reversible and thus the steady-state probabilities have the form (5.6).

Conversely, assume that (5.6) is a solution of (5.1). By substitution of (5.6) in (5.1)

and simplification we obtain

iEM(D)-U(D) jED-J(D)

We now seek the conditions under which this equality can hold. Recall that a state

D of the Markov chain is said to be maximal if M(D) - 4. Given a generic state D,
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define a maximal path starting at D to be a finite sequence of states Do, D1 ,..., Dk

such that D0 = D, D1+1 = Dt U {i} for some i E M(D), I = 0,1,...,k - 1, and

Dk is a maximal state. Define the length of the maximal path tu be k, and let I(D)

be the maximum of the lengths of the maximal paths starting at D. We shall now

prove (5.5) by induction on (D). For 1(D) = 0 we have that D is a maximal state,

for which M(D) = U(D) = q. Then

SPj= 0 .
jED-J(D)

Since, by assumption, pj > 0, we obtain that D = J(D). Assume now that, for n a

positive integer, (5.5) holds for all states D' for which 1(D') < n. Let D be a state

for which I(D) = n + 1. For all j E M(D), D U {j} is a state for which (D) :_ n.

By the induction hypothesis we then have J(D U {j}) = D U {j}, which means in

particular that j is not blocked by D or, in other words, that j E U(D). Then

U(D) = M(D) and

pj =0.

jED-J(D)

Again, as all pj > 0, it follows that D -= J(D). I

Example 5.1.15 As an application of Proposition 5.1.13, we can now prove that,

with a symmetric hearing matrix, nonpersistent CSMA always leads to a product

form solution. Consider any two used links i and j, and represent them as (s(i), d(i))

and (s(j), d(j)), respectively. Under CSMA, if i blocks j, then eithei s(i) = s(j) or

hj(i).(j) -- 1. T'r'. symmetry of the hearing matrix then implies that j blocks i, and

thus by Proposition 5.1.13 the stationary distribution will have a product form. If

the hearing matrix is not symmetric we will not get a product form solution, except

when all pairs of nudes s(i) and a(j) for which h3(j)s(j) = 1 and hs(j)=(i) = 0 are

such thaf at least one !1ement of the pair is ttiV source of no used links.
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Example 5.1.16 The ID-BTMA protocol will not, in general, lead to a product

form solution. Indeed, if the network under consideration contains the subnetwork

and traffic pattern of Example 5.1.7, we can find links i and j such that i blocks j

but j does not block i. For some specific topologies and traffic patterns, however,

ID-BTMA will have a product form solution. Examples of these are a star network

with arms of length 1 and arbitrary traffic pattern, or a 4-node chain in which the

outer nodes generate no traffic.

5.1.5 Computational Complexity

It has been the unwritten experience of the researchers in the field that, even

in the case where an analytical solution such as the product form of Equation (5.6)

exists for the steady-state probabilities, its determination is computationally hard.

We study in this Section the computational complexity of the normalizing factor

p(O) - 1 needed to evaluate (5.6).

From the condition EDES p(D) = 1 it follows that the normalizing factor is

given by

= E (5.7)
DEp iED

A straightforward method of computing the normalizing factor consists of enumer-

ating the state space S and computing p(O)- via Equation (5.7). Proposition

5.1.13 asserts that, when a product form solution exists, the blocking between links

is symmetric, and this in turn implies that the state space S is formed only by those

states D such that, for each such D, no two links i,j E D block each other. Thus

the problem of the enumeration of the state space is equivalent to the problem of

finding all independent subsets of the link blocking graph of the network, that is,
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the undirected graph with adjacency matrix A = [aij], where

1, if i blocks j, and i, j are used links,
aV = 0 otherwise,

problem that is known to be NP-complete. As pointed out in [Magl83], this straight-

forward method of computing p(O) - 1 is computationally hard.

We show in this Section that any method of computing p(o)-l is computation-

ally hard, by showing that the INDEPENDENT SET problem of computational

complexity theory ([Gare79]) reduces in polynomial time to the problem of com-

puting p() - , and thus that the latter problem is at least as hard as the former,

known to be NP-complete.

The INDEPENDENT SET problem is defined in terms of an undirected graph

G = (V, E), where V is the set of vertices (or nodes), and E is the set of edges (or

arcs) of the graph, and is formulated as a decision problem, in a form consistent

with the computation model of a Turing machine. We shall also define the problem

of computing the normalizing factor as a decision problem on a graph. The graph

we are interested in is the link blocking graph of the network in question.

Given a graph G, we say that a set of nodes is an independent set if no two

nodes in the set are adjacent. The two problems of interest for us are defined as

follows.

P1 (INDEPENDENT SET) Given an undirected graph G = (V, E), and an integer

K < IVI, where IVI denotes the cardinality of V, determine whether there is an

independent set of vertices V' C V, with IV'I > K.

P2 (SP) Given an undirected graph G = (V, E), a collection {A},,v of integers,

and an integer R, determine whether or not

SP(G) 1[A > R.
Dcv iED

D indep.
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The input strings to these problems use the symbols "0", "1", and ",". Let

L = IVI. The input to problem (P1) is rl, r2,..., rL, K, where ri is the j-th row

of the adjacency matrix of G. The length of this input is n, = (L + 1) L + Plog Kl

(all logarithms being taken to be to the base 2), satisfying L2 < ni < L2 + 2 L.

The input to problem (P2) is rl, ... , rL, Al,... , AL, R, of length n 2 = L (L + 1) +

z=1 (rlog Ai + 1) + log R. Note that, since SP(G) : m =1 (1 + Ai), the problem

of determining the value of SP(G) can be solved by doing a binary search on

{1,... ,fnL 1(1 + Ai)}, taking at most =1 log(1 + Ai) < n2 calls to a solver for

problem (P2).

We now have

Proposition 5.1.17 The INDEPENDENT SET problem reduces in polynomial time

to problem SP.

Proof: Given an instance of (P1), create an instance of (P2) with the same adja-

cency matrix, and with A1  ... AL A 2L + 1 and R AK. The length of

the corresponding input string is

n3= L(L +1)+L(K +2)+ K (L+1) _ L(L +1)+ L(L+2)+L(L +1)<8 L2,

so that n3 < 8 n1.

Suppose the largest independent set has at most K - 1 elements. Then

SP(G)= AD =~ K- - LA
DCV j=0 DEV j=O /

D i'dep. D idep.
IDI=,

K1 L , K~1 K
<- (LL/ 2 j) 1 A I

The two last steps are justified, respectively, by Sterling's approximation, and by

the fact that A > 2 L + I implies 2 L (AK - 1)/(A - 1) < AK. Supposing now that

79



there exists an independent subset with K elements, then SP(G) > AK = R. Thus

we found a set of parameters, A,..., AL, R, function of K and L, such that the

answer to an instance of (P2) is "yes" if and only if the answer to the corresponding

instance of (P1) is "yes," and the translation from (P1) to (P2) can be done in

polynomial time. 1

5.2 Markovian Description of Receiver Activity

We present in this section the analysis of the activity of the network receivers

under protocols of class V. The results derived will later be used for the analysis of

the network throughput.

5.2.1 Markovian Representation of Spread Spectrum Systems

For the protocols in class V, the state of a receiver at a given time t is determined

by the state of the receiver at time t = 0 and by the activity of the transmitters up

to time t. It then follows that the ad ;4i n to the state description X(t) of Section

5.1 of the information regarding the state of time t of the receiver at node n is

sufficient to describe the activity of this node. There is thus decoupling between the

description of the activity of different receivers, in the sense that the description of

the activity at one receiver does not require the knowledge of the activity at different

receivers, as opposed to the case of more general protocols, where the description

of link activity requires that the state of all receivers in the network be recorded in

the state description of the system.

Let rn(i) represent the number of the link that the receiver at node n is locked

onto at time t (rn(l) will be defined as equal to 0 if the receiver is not locked onto
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Fig. 5.5 A three-node network

any packet at time t). {r,(t) : t > 0} is a continuous time stochastic process. In

order to avoid notational ambiguity, we denote the state vector associated with

node n by Yn(t), and define it to be

Y.(t) -A (X(t); ,.(0)).

There exists one such process associated with each node in the network. It is clear

that, with assumptions 1.-5. of Section 4.1.3., for any s < t, rn(t) is a (random)

function of only rn(s) and {X(u):s <_ u < 1). Thus, given the Markovian nature

of X(t), Y(t) is also Markovian, for each n.

In order to define the state space S* of Yn(l), let E(n) be the set of links

emanating from n, i.e., the set of links whose source node is n, and define

((n) = {E S: Dn E(n) 7 0}.

Whenever X(t) E t(n), the transmitter at node n will be active, and thus rn(t) = 0.

The only states in Sn with first coordinate D E E(n) are thus the states (D; 0).

Let V(n) be defined as the set of the incoming links into node n, that is, the set

of links that have n as destination node. If X(t) f C(n), rn(t) will in general

take additional values in D n V(n), although some such states (D;j) might not

be reachable from state (0; 0). An example of this situation is provided by the

network of Figure 5.5, where only links I and 2 are used, where it is assuined that
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Fig. 5.6 State space for the example of Section 5.2.1

pB(O; 1) = P(O; 2) = PB({1}; 2) = PB({2}; 1) a1, nd where the protocol is such

that. link 1 blocks link 2, but link 2 does not block link 1. The state transition rate

diagram of the corresponding Yp(t) process is shown in Figure 5.6. The starred

states are clearly transient states, not reachable from (0; 0), and thus will have zero

prolability.

Ve define the state space S,, of Yn(t) to be

S,* = {(D: 0): D E iT(n)} U {(D;j) : D E S - i(n),j E {0} U (D n (,))}.

5.2.2 Existence of Steady-State Probabilities

Although not every two states in S, communicate, we can still guarantee the

existence of a unique stea(dy state distribution. To s;ec that this is indeed the case,
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let us first observe that the state (0; 0) can be reached from any other state with

nonzero probability in any finite time t > 0. Let us define "R,, to be the collection of

all states which can be reachcd from (0; 0), and T to be the collection of states which

cannot be reached from (0; 0). 1Z, is an ergodic class, since it is formed by a closed

class of communicating states, with a finite number of elements. T,, is a transient

class, since there is a nonzero probability of reaching state ( ; 0) from any of its

states, and hence never returning to it. It then follows ([Heym82], Corollary 7-9,

Th. 7-10) that the Markov chain Yn(t) possesses a unique steady-state distribution.

We let {p, (D;j) : (D;j) E S,*} denote this distribution.

5.2.3 Balance Equations and Steady State Probabilities

The general form of the balance equations for Y],(t) is

pn (D; i) gn q((D; i), (D';iV)) = pn (D'; i')qn ((D'; i'), (D; i)),

( D,;,)Es (D';i')ES"

where qn((D; i), (D'; i')) represents the rate of transitions of Y,(t) from state (D: i) E

Sn* into state (D'; i') E S,.. Defining, for a fixed D E S,

ID = {j : (D;j) E S.*}

to be the set of values that the second coordinate of (D;-) E S, can take, the

balance equations take the form

p,(D; i) E F, q,((D; i), (D';iV))= p,(D'; i')q,((D';iV), (D; i)).

D'ES i'e2"D,  D'ES itEID.

(5.8)

For the class of protocols that we are considering we have that, for D,D' E S

and i E TD,

P{X(t + At) = D' I X(t) = D, rN() = i} = P{X(t + At) = D' I X(t) = D}.
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On the other hand,

P{X(t + At) = D' I X(t) = D, r,(t) = i}
= P{X(t +At) =D',rn(t+At) =i' IX(t) =D, rn(t) =i}

i'EXD,

so that, by equating the right hand sides of the previous two Equations, dividing

by At and taking the limit as At --- 0, we obtain (cf. also [Keme66], Section 6.3)

, q,((D; i), (D'; i')) = q(D, D'), i E 'D. (5.9)
iE-TD'

Using (5.9) in (5.8) and adding the equations (5.8) for all i corresponding to a fixed

D E S yields

p. (D; i)] E q(D, D')= ' p.(D'; i') , qn((D'; i'), (D; i))
i DIES D'ES i'EID, iEXD

or

Pn(D i)] Eq(D,DV) , E~ ~ Pn(D';i')] q(D',D). (5.10)1iE DIES DIES i'ErD,

By the law of total probability we have that

P{X(t) = D} = P{Yn(t) =(D;i)}.

Taking the limit as t - oo, and due to the uniqueness of the steady state distribu-

tions of X(t) and Yn(t) we obtain

p()= p(D;8i).4
iE!TD
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Thus (5.10) becomes

p(D) q(D,DV)= p(D') r(D', D) (.2

D'ES D'ES

which is the balance equation for state D in the Markov chain X(t). We thus can,

for a fixed D E S, group together the balance equations (with respect to Y(1)) for

the states (D; i), i E ID, and replace an arbitrary one (say, the one corresponding

to state (D; io)), with the balance equation (5.12) for state D (with respect to

X(t)). Equation (5.11) can then be used to express the probability of the state

corresponding to the chosen equation in terms of p(D) and {Q,,(D; i), i E ID, i :

io}. This procedure allows us to separate the computation of the steady-state

probability distribution of X(t), which relates to the activity of the transmitters,

from the computation of the steady-state probabilities concerning the activity of

the receivers in the network which is another form of the decoupling referred to

previously.

We now er---,ine the trsnsition rates of Yn(t), and write the corresponding

equations. As described by (5.9), the sum of the transition rates out of state (D; i)

depends only on D. These transitions are illustrated in Figure 5.7 for states D V

'(n). The diagram for the transitions out of state (D; 0), D E C(n), is similar to

Figure 5.7a, the differences being that state (D U {i}; i) does not exist, and that

thus Pn(D; i) = 0. The transitions into state (D;j) depend on whether the set D

considered is in C6(n) or not.

(i) For D E £(n), the only corresponding state in Sn is (D; 0), the transitions

into which are shown in Figure 5.8. The balance equation derived from this

diagram and Figure 5.7 will be, upon performing the procedure described in

the previous section, replaced by the balance equation for state D (with respect

to X(t)), and will not be explicitely written here.
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Fig. 5.8 Transitions into state (D,O), D E C(TZ)

(ii) For D V $(n) the cases (D;O) and (D;j),j E Ir - {0} have to be considered

sel)arately. Figure 5.9a shows the transitions into state (D; 0). The balance

equation derived from this diagram and Figure 5.7 will be replaced by the

balance equation for state I) (with respect to X(f)), and will not be written

here. The transitions into state (1): j), where 1) E S and j E V(n) n 1), are

shown in Figtre 3.9b. The corresporiding balance equation is, after eliminat jg

p .( 1)- {j0) by th use of eq. (5. 11)
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p, (D; j) [. k+ lUD 1

iE I I I I l l

-
1 fjEJ(D)} [p(D - {})- p,(D - {j; in)] Ai'?n(D- {j};j)

+ Pi: Pn(D-{k;j) Ak
kEJ(D)-{j}

+ , pn(Du{l}; j)i, DES, jEDnV(n).
IEM(D)
IOE(s)

(5.13)

Introducing the conditional probabilities {Pn(D; i), D E S, i E {O}U(DnV(n))},

defined by

Pn (D; i) pn(D;i) (5.14)
p(D) (

equation (5.13) can be written as

p(D) EIPkU+D) A] A (D; j)

= 1 jEJ(D)}p(D--{j}) 1- Pn(D-f{j};m) A.Pn(D-{j};j)

mEV(.)

+ p(D-{k})Pfn(D-{k};j) Ak
kC-J(D)-{j}

+ y p(DU{l})P(DU{l};j)p,, DES, jEDnV(n).
IEM(D)

(5.15)

Once (5.1) has been solved for {p(D) : D E S}, the solutions to the systems of

equations (5.13) or (5.15) will give {pn(D;j): D E S,j E D nV(n)} or {P,(D;j)
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D E S, j E D n V(n)}, respectively. The existence and uniqueness of the stationary

distribution of Y(t) ensures that the system of equations (5.15) possesses a unique

solution satisfying Pn(D;j) >_ 0, j E TD, and IiEID P.(D,j) = 1 (see (5.11)).

For product form protocols for which, as shown in Section 5.1, U(D) M(D)

and J(D) = D, equation (5.15) simplifies to

E 1Ak + Au Pn (D;ij)
LkED IEU(D)J

- 1- Y Pn(D-{i};m) pj1Pn(D-{j};j)[ ,,ED-{i)
,, v(s) (5.16)

+ E P,,(D - {kl;j) Pk
kED-{j

+ , Pn(Du{/};j)A, DES, jEDnV(n).
IEU(D)

Equation (5.13) shows clearly the form of decoupling afforded by the systems

under consideration in this Chapter. If we write (5.1) and (5.13) as a single system

of linear equations and consider the unknowns grouped in blocks, with the zeroth

block consisting of {p(D) : D E S1, and the k-th block, k = 1,..., N, consisting of

{Pnk (D; j) : D E S, j E D n V(nk)}, where hj,..., nN are the network nodes, then

the coefficient matrix of this system has the structure shown in Figure 5.10. Thus,

after the equations for {p(D) : D E 5) are solved, each of the sets of equations for

{Pnf (D; j) : D E S, j E D n V(nk)} can be solved independently from each other

(and in parallel). Equation (5.16) is a particular case in which the solution of the top

block of Figure 5.10 is known in advance, and thus the corresponding unknowns are

removed from the subsequent blocks (after a rescaling of the remaining unknowns).
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Fig. 5.10 Structure of the matrix of the coefficients of systems obtained from (5.1)
and (5.13)

5.3 Throughput Analysis

Given the Markov chains describing the activity of a packet radio network, we

wish to find an expression for the throughput of each link as a function of the

transit ion rates and tile steady-state probability distribution of the Markov chai,,s.

We start in this Section by presenting general expressions for the link thro,,ghput

of capture modes in class C,, defined in Section 4.1.3. As will be seen, this analysis

(,l~V makes use of the representation of the transmitter activity. We then apply

I,(ese general rest, ll. t, the part icular cases of zero capture and perfect captire. We

will lhen give the a falysis of tle inore general capture modes, which requires III

addit in the (escril)timi or ilie receiver activity. NVe conclude by i':esenting some

anlalytical exatiples of applicat ion.

By definition, the th rough),ut of link i, Si, is the long-run fraction of ttie that

link i is engage(I in successfld transmissions. For the purpose of analysis, we make
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the restriction, always satisfied in practice, that the success of a transmission does

not depend on the behavior of the system after the termination of the transmission

in question.

5.3.1 Capture Modes of Class C,

Recall that a capture mode is said to belong to class C, if, for any link j, the

availability of the destination receiver of link j to lock onto a packet transmitted on

that link is completely determined by the set D of links that are active just before

the transmission of the packet starts. Thus for this class of capture modes one does

not need to solve equations (5.13) or (5.15) to determine the probability of finding

an idle receiver given the set D of active links.

5.3.1.1 General Throughput Equations

Let X(t) represent the set of links which are active at time t, as in Section 5.1,

and let U(i) be the collection of states D E S that do not block link i. Define

S(D, i), D E U(i), to be the fraction of time that link i is engaged in successful

transmissions and the state just prior to the start of those transmissions is D.

S(D, i) accounts for all successful transmissions on link i that are initiated by a

jump of the Markov chain {X(t)} from state D into state D U {}. Summing over

D we obtain

Si= S(D,i). (5.17)
DEU(i)

For a fixed D and by the strong Markov property ([Qin175]), the times of the suc-

cessive transitions from state D to state D U {i} are regeneration points for {X(i)}.

We now consider the cycles defined by the time intervals between two successive

regeneration points. Let Ck(D, i) denote the length of the k-th cycle, and Tk(D, i)
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be the total time in cycle k that the channel was used successfully by a transmission

over link i. We can think of Tk(D, i) as the "reward" (for the purpose of calculating

the link's throughput) earned during the k-th cycle. With our assumptions on the

protocols and modes of operation of the network, {(Ck(D, i), Tk(D, i)): k > 1} is a

sequence of independent and identically distributed pairs of random variables. In

general the elements of each pair are correlated. In the following we will omit the

subscripts in these variables whenever we refer to a generic one. If we let N(1) be

the number of cycles completed by time t, then

S(D, i) = lir 1 T (D, 0.
t Otk=1

Let E[C(D, i)] and E[T(D, i)] -(D,i) denote the expected cycle length and

expected reward, respectively. Standard theorems in the theory of renewal processes

([Ross7O]) assert that, with probability one,

S(D, i) = E[T(D, i)]
E[C(D, i)]" (5.18)

The quantities on the right-hand side of the last equation can be computed in terms

of the parameters of the system.

Proposition 5.3.1 The expected cycle length E[C(D, i)] is given by

E[C(D,i)] = X(D) D E U(i). (5.19)

Proof: Let n(t) denote the number of state transitions of the Markov chain X(t)

in (0, t], and define the embedded Markov chain {Xk : k > O} by

Xk = X(t), for any t such that n(t) = k.
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Xk is the state the Markov chain X(t) is in after the k-th transition. The irreducibil-

ity and positive recurrence of X(t) implies the same properties for the embedded

chain Xk, which then possesses a stationary distribution {ir(D) : D E S}, with

ir(D) = li P[Xk = D].

k-o

The relation between i(D) and Q(D) is given by ([Ross7O])

p(D) _r(D)H(D)

p(D') = w(D')H(D') ' D, DE S (5.20)

where H(D) is the expected sojourn time of X(t) in state D, given by
_1

H(D) = 1 ((5.21)

D'ES

Given that X(t) is a continuous time Markov chain (and hence the next state

after state D E S is determined by the minimum of an independent collection of

exponential random variables with parameters q(D, Di), D' E S), the transition

probabilities for the embedded chain Xk are easily computed; in particular, those

relevant to this proof are given by

P[Xk+1 = DU{i} I Xk = D] D E U(i). (5.22)
E q(D, D')'

DI ES

In order to compute the average cycle length we note that ([Ross70])

lim P[X(t) = DU{i}, Xn(t)_ = D] = H(DU{i}) (5.23)t 00E(C(D , i))"

Developing the left-hand side of (5.23) gives us

li P[X(t) = DU{i},XXn(t)_l = D]

= p(DU{i)) lrm P[Xn) = DIXn(t) = D U{i}]

= p(Du{i}) P[Xk+l = DU{i} I Xk = D] r(D)
ir(DUli})
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which, when substituted in (5.23) after using (5.20)-(5.22), gives Equation (5.19).

From (5.17), (5.18) and Proposition 5.3.1 we then obtain

Proposition 5.3.2 The throughput of link i, Si, is given by

S, = i p(D)T(D,i)

DEU(i)

or, defining the normalized rescheduling rate GiA A,

Si = Gi E p(D) i T(D, i).
DFEU(i)

T(D, i) is the product of the probability that a packet is successful, and the

average packet length conditioned on it being successful. The probability of the

packet being successful is itself the product of the probability ?d()(D, i) that the

destination receiver will successfully lock onto the packet, the probability that the

packet is not lost due to interference within the vulnerable period, if any, and the

probability that no bit errors occur, given that the packet is succesfully locked

onto and no vulnerable period interference occurs. Note that, in order to compute

these quantities, one need not assume a particular interference model such as the

one of Appendix I, this model being just one case where those computations are

straightforward. We now present the computation of T(D, i) for two capture modes,

zero capture and idealistic perfect capture (see Section 4.1.3 for the definitions),

that can be obtained by particularization of the parameters of the capture model

of Appendix 1.
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5.3.1.2 Idealistic Perfect Capture

Let C(i) be the set of links emanating from i's neighbors. Under idealistic perfect

capture a transmission over link i is successful if and only if at the time it starts no

other link in the set C(i) is active, irrespective of what happens after the start of

the transmission over link i.

Let U.(i) be the subset of U(i) formed by those states that do not contain any

link in C(i). A receiver will lock onto a new packet with probability 1 if and only if

the state just prior to the start of the packet is in U,(i). For D E U(i) - U,(i), we

have T(D, i) = 0; for D E U0(i), we have T(D, i) = 1/pi. We thus have

Proposition 5.3.3 The throughput of link i under perfect capture is given by

Si = Gi E p(D). (5.24)
DEU.(i)

Equation (5.24) was first derived in [Boor80] for CSMA, using a heuristic argu-

ment.

5.3.1.3 Zero Capture

Under zero capture we assume that a transmission over link i is successful if

and only if at the time it starts and during the whole duration of the transmission

no link in C(i) is ever active.

As in the case of perfect capture, for all states D in U(i) - 4,(i), T(D, i) = 0,

and thus

Si = Gi , p(D) pi'T(D,i).
DEUo(i)

However, in this case the average transmission time of a successful message is not

1/pi, due to the dependency that exists between the message length and its success.
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The computation of T(D, i) involves the construction cf an auxiliary Markov chain.

In the original chain, let .A,(i) be the collection of states in which i is active and

no element of C(i) is active, let .A,(i) be the collection of states in which i is active

and some element of C(i) is active, and let 3'(i) be the set of states obtained from

.A,(i) by deactivating link i (see Figure 5.11). With respect to these definitions,

the start of a transmission over link i which does not suffer a collision at its very

start corresponds to a transition of the Markov chain X(t) from a state D E /A(i)

into state D U {i} E .As(i). X(t) will remain in A,(i) as long as i is active and not

collided with. A possible later collision of i with a transmission over some other link

in C(i) corresponds to a transition from some state in .A,(i) into a state in .A4(i).

The successful completion of link i's transmission corresponds to a transition from

some state in .A,(i) into a state in J(i) without having previously visited any state

in .A,(i).

The structures of U1(i) and .A5(i) are related. Any state of the form D U {i},

with D E U1(i), is in .A,(i). However, if X(t) is not reversible, As(i) will contain

other states. These states are the ones that contain some link j 0 C(i) that blocks

link i but is not blocked by i. Any state containing such a j cannot clearly be of

the form DU {i}, with D E U.(i), since then we would have j E D and thus i would

be blocked by D, contrary to the definition of 14(i); but nevertheless there will be

states in .A,(i) containing such links j, namely the state {i,j). Any state in .A,(i)

not containing any such j will be of the form D U {il, for some D E 1s(i).

The auxiliary Markov chain is now constructed 1.y grouping all states in ,(i)

into one absorbing state denoted again J(i), grouping -ll states in A,(i) into another

absorbing state of the same name, and deleting all states not in A,(i)UAc(i)U,5(i).

When deleting a state, all arrows incident to that state are deleted. In this new

chain, the states in .A4(i) are transient and, with probability 1, X(t) will be absorbed
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in either .A(i) or J(i). From what was said above, we see that a transmission over

link i, initiated successfully by a jump of X(t) from some D E 1.,(i) into D U {i},

will terminate successfully if X(t) is absorbed in J(i), and will suffer a collision

if absorption occurs in Ac(i). Thus, for D E U1(i), T(D, i) equals the length of

the time interval between the first entrance to D U {i} and absorption in 9(i), if

absorption occurs in J(i), and 0, otherwise.

Let k be the cardinality of A,(i). By suitable reordering of the states of the

modified chain, let its transition rate matrix be

R*(i) [ 0 ] (5.25)

where R.(i) is the (k x k) matrix of the transition rates between states in A,(i),

e 4 (1... 1]T is of dimension (k x 1), pil is the vector of the transition rates from

.A,(i) into J(i), p is the (k x 1) vector of the transition rates from A,(i) into Ac(i),

and z = [0... 0] is of dimension (1 x k). With these definitions, we have

Proposition 5.3.4 The throughput of link i under zero capture is given by

Si= Gi p(D) PiTDU(i}, (5.26)
DEU,(i)

where TDu(i} is the component with index D U {i} of the column vector

T R 2(i) 1.

Proof: As we saw above, T(D, i) is the average time to absorption in J(i) for a

chain started in state D U {i}, over the set of sample paths for which absorption

in J(i) occurs. Thus T(D, i) can be determined from the probability transition

matrix, P*(), of the modified chain, defined by

P ,D,(t) = P[X(f) = D' I X(O) = D]
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for D, D' E A,(i) U At(i) U .(i). The transition probability matrix corresponding

to R*(i) has the form

"P,(t PAOt PCM)]

P*(t) z 1 0

. 0 1 -

and is determined by the forward Kolmogorov equation

dP*(t) = P*(t) R*(i) , P*(0) = I.

Given the structure of R*(i) the forward Kolmogorov equation takes the form

Ps(t) =P s(t) R,(i) ,P.(0) =I

,e )= p, P.(i) 1 , PJ(o) = 0

1PC(t) = P.(t) , Pc(0) = 0

with solution

P(t) =eR(Ot  ,t>O

Pc(t (eR.(i)t - ) R 1(i) , I > O.

Note that, since the states in A,(i) are transient, e& ( i)t -- 0 as t -- oo. Let now T

be a column vector with rows indexed by the states in .A,(i) in the same order as

the rows of R(i) and where, for D' E A,(i), the component with index D', TD,, is

the random variable giving the time to absorption in J(i) when the chain is started

in state D'. Then

P{T<t 1}=Pj(t) , > 0

and

A E{T;T < oo} f [P.(oo) - P(t)] dt

= - eR ' ) R-(i) Idt = # R-'(i) 1.
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Since T(D, i) = TDu{,}, we obtain equation (5.26). 1

Proposition 5.3.5 The probability of success for a packet of link i whose transmis-

sion starts with the system on state D is given by the component with index Du{i}

of the column vector

P. = -p R 1'(i) 1.

Proof: The probability of successful transmission is the probability that the aux-

iliary Markov chain is absorbed in 3(i). From the proof of Proposition 5.3.4, it is

given by

lim Pj,(t) = -pi R'(i) 1.
t--.oo

Given the column vectors A = [ai] and'B = jbi], let C = A ® B and D = A Q B

denote the column vector C = [ci] such that ci = ai/bi and D = [dij such that

di = aibi, respectively. (The vector A 0 B is often called the Schur product of A

and B.)

Proposition 5.3.6 The average length of a successful packet sent over link i whose

transmission starts with the system in state D is given by the component with index

D U {i} of the column vector

L, [R, R;2 (i) 1 0 [-pi R'(i) 1] (5.27)
--- 1 - (R 2 (i) Q 01 + R 1 (i) ,pj. (5.28)

Proof: Equation (5.27) derives directly from Propositions 5.3.4 and 5.3.5. For

Equation (5.28), note that the rows of R(i) add up to zero, so that

Rs(i) I + il + = 0.
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Multiplying by R.'1 (i) and R-2 (i) and rearranging we obtain, respectively,

-) = 1 + R'I(i)

and

R' 2 (i) 1 = -R - 1 - R;2 (i) .

Substituting these expressions in (5.27), we obtain (5.28). 1

Proposition 5.3.7 The average length of an unsuccessful packet of link i whose

transmission starts with the system in state D is given by the component with

index D U {i} of the column vector

L= 1 + [Ro2 (i) p] 0 [-R;'(i) ].

Proof: The vectors of the average lengths of the channel packets, the successful

packets, and the unsuccessful packets, are related by

1
- 1 = L, ® P, + L E (1- P,)
pi

from which

1_1-L, G® P,
Lu p, (5.29)1 -Pa

But

I - P, = I + p, R.1 1 = -R.-1 (5.30)
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and

_L, E = 1-p R 2 (i)1

= + R'(i) 1 + R- 2 (i)

1 + , R (i)1]+ R.(i)"

pi

Combining (5.29)-(5.31) we obtain the desired result. *

Proposition 5.3.8 If the rates of transition from state D E .A,(i) into A,(i) are

independent of D, the successful packets have an exponential length distribution.

Proof: The distribution function vector of the successful packets is given by

F(t) = P(t) 0 I-pi R;1 (i) 1]

[ Rx-'t(i) (e  1'' i )'  1] 0 I-p , :'(d) 1] .

From the hypothesis of the Proposition, W = Ac 1, for some A, > 0. Then

R,(i) 1 +pi1 + A,1 = 0

or

R,(i) 1 = -(i + A,) 1,

which shows that 1 is an eigenvector of R,(i) with associated eigenvalue -(Ili + ,).

It then follows that

R;'1 (i) 1 = (p, + Ac)- 11
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and

eR,(i)t 1=e-(pi+A\c)t 1

so that

A situation in which the hypothesis of Proposition 5.3.8 is satisfied is ALOhIA

with zero capture. Indeed, in this case, no link emanating from any neighbor of i's

destination is active in A,(i), and the rate of transition from any D E A,(i) into

Ac(i) is the rate at which any of these links becomes active, thus independent of

D. The proof of Proposition 5.3.8 also gives the average length of the successful

packets, and the probability of success for a packet.

5.3.2 General Capture Modes

In the case of capture modes in class C,, the availability of an idle receiver to

lock onto a new packet could be readily deduced by examining the set D of links

active just before the start of the packet transmission. In more general capture

modes, such as those of typical spread spectrum systems, the situation is different.

Due to the orthogonality properties of the codes used, a receiver which is not locked

onto a packet is able to lock onto a new packet even in the presence of remainders of

neighboring transmissions that were not locked onto to. Thus, in order to determine

the success or failure of a packet, we must not only kntow which links are active at

the time its transmnission starts, but also whether the destination receiver is free

to lock onto the new packet. Consequently, for the computation of the throughput

of a given link we need to consider the joint description of the activity of the
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transmitters and the activity of the receiver at the destination node of the link

described in Section 5.2. To these processes we then apply the methods of Section

5.3.1.

5.3.2.1 General Throughput Equations

Consider that we are interested in the throughput Si of link i, and let d(i) be

its destination node. Again we can write

Si'- E S(n, i), (5.32)

DEU(i)

where S(D, i) is the throughput corresponding to the successful transmissions of

link i which find the set of active links just prior to their start to be D. We

now examine the process Yn(t) to determine these partial throughputs. The only

transitions which contribute to the throughput S(D, i) are those from state (D; 0)

into state (D U {i}; i). We use these transitions to define regenerative cycles, for

which we again let C(D, i) denote the length of a typical cycle, and T(D, i) the total

time during a typical cycle that the channel is used by a successful transmission

over link i. The "partial" throughput S(D, i) is given by

S(D,i) = E[T(Di)](5.33)E(C(D, i)]'

with (cf. Proposition 5.3.1)

EEC( D, i)] =
q(i) ((D; 0), (D U {i}; i)) pd(i)(D; 0)

(5.34)
1

Ai Pd(i)(D; i) Pd(i)(D; 0)

Note that here T(D, i) denotes the time that the channel is successfully used

by i's packet given that the packet was locked onto by the destination, whereas
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in Section 5.3.1 it denoted the time that the channel is successfully used by i's

packet given that i became active. E[T(D, i)] as defined in Section 5.3.1 is thus the

product of Pd(i)(D, i) and E[T(D, i)] as defined here. E[T(D, i)] depends on the

conditions under which the packet will be successfully received after the preamble

is successfully locked onto.

Combining Equations (5.32)-(5.34) we have

Proposition 5.3.9 The throughput of link i is given by

Si = Ai E pd(j)(D; 0) Pd(i)(D; i) E[T(D, i)] (5.35)
DEU(i)

or, in terms of the conditional probabilities Pd(i)(D, *) introduced in (5.14),

Si = Ai E p(D) Pd(,)(D; 0) Pd(,)(D; i) E[T(D, i)]. (5.36)
DEU(i)

5.3.2.2 Spread Spectrum Capture

We discuss now the computation of E[T(D, i)] for the model for correct packet

reception introduced in Appendix I. The capture mode obtained from that model

is defined by the following conditions, concerning the correct reception of link i's

packet:

(i) given that the set of links active just before the start of i's transmission

is D, the packet is lost due to interference by transmissions with the same

code sequence and whose timing falls within i's packet vulnerable period

with probability pp(D, i);

(ii) while the packet is being transmitted, it is lost with probability pl(ij)

whenever link j becomes active, due to j's timing falling within i's vulnerable
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window, or because link j's source node coincides with link i's destination

node (this last case occurring only for undisciplined protocols, in which case

p,(i, j) equals one);

(iii) after the packet transmission starts, bit errors occur as a Poisson process

with rate c(D, i) whenever the set of active links is D; the packet is lost if

at least one bit error occurs.

Remark 5.3.10 The above model for correct reception is a direct extension of the

zero capture model of Section 5.3.1.2 to the situation where a vulnerable period and

state-dependent bit errors exist. State-dependent bit errors were first considered in

the context of a similar analytic framework by Storey and Tobagi in [Stor84l.

E[T(D, i)] is computed by "tracking" the behavior of the system since i's trans-

mission starts until it either finishes successfully or the packet is lost due to any of

the mechanisms in (i)-(iii) above. (This is the same approach as the one followed

in Section 5.3.1.3 for the analysis of zero capture.) Since the loss of the packet after

it is locked onto is a function exclusively of the activity of the network transmit-

ters, we only need to consider an auxiliary Markov chain {XJ'(t)} obtained as an

absorbing modification of the process {X(t)} of the active links.

Let us first assume that no loss occurs when i's packet starts due to correlated

interference within the vulnerable period by transmissions with the same code se-

quence or due to the unavailability of a receiver. Let A,(i) be the set of states D E S

such that i E D. After i's packet is successfully locked onto by its destination, the

Markov chain {XP(f)} will "wander" in A.(i) as long as no bit errors or vulnerable

window collisions take place. Once one of these events occurs, {X*(t)} transits into

an absorbing state A,(i). While in state D E A,(i), transitions into this absorbing

state due to bit errors occur with rate c(D, i), and transitions due to the start of

a new transmission over link j whose timing falls within i's vulnerable window oc-
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cur with rate pl(i, j) Aj for any j E U(D). If i's transmission ends successfully, the

Markov chain will be absorbed into state J(i). Within A,(i), {Xa(t)} transits from

D E A,(i) into D U {j} E A.(i) with rate [1 - pl(i,j)]Aj, and into D - {1} E .A,(i),

I E D, with rate ul. E[T(D, i)] is then the average time to absorption in 3(i)

over the set of sample paths that terminate in 3(i), given that {X9(t)} started in

D U {i} E .A4(i). The transition rate matrix R*(i) of {Xg(t)} has the form given in

Equation (5.25), and E[T(D, i)] is given by Proposition 5.3.4.

If we now consider the possibility of loss of i's packet at the start of its trans-

mission due to an existing transmission having timing within i's vulnerable window,

we have

Proposition 5.3.11 Under the model for correct reception of Section 5.3.2.2, the

average time the channel is successfully used by i's packet in a cycle, given that the

packet is successfully locked onto by its destination, is given by

E[T(D, i)] = [1 - pvp(D, i)1 TDU{i},

where TDU{i} is the component of index D U {i} of the column vector

R -R 2 (i) 1, (5.37)

and R(i) is the submatrix of the state transition rate matrix of {X9(t)) whose rows

and columns correspond to the states in .A4(i).

Results similar to Propositions 5.3.5-5.3.8 can also be derived for the capture model

being considered.

5.3.2.3 Example of Application

In order to illustrate the application of the theory developed in tbh>,c chapter, we

give here an example of the actual computation of the throughput equations.
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Fig. 5.12 A four node ring network

We consider a four node ring network, shown in Figure 5.12, operating under

CSMA and in which receiver-directed bit-homogeneous codes are used. The pream-

ble codes and data portion codes are distinct and, for analytical simplicity, assumed

perfectly orthogonal, in such a way that an unlocked receiver locks with probability

1 onto a new packet destined to it. In terms of the parameters defining the system,

we have Pd(i)(D; i) = 1 if i 0 D, and "Pd(j)(D, i) = 0 otherwise. Also for analytical

simplicity we assume that there exists no interference between two transmissions

with different codes, which in this case are any two transmissions with different

intended destinations. We assume that transmissions with the same destination

can interfere if their timing is within the duration of the vulnerable period, whose

relative width we designate by PL, but do not otherwise cause other bit errors.

We assume the timing of each interfering signal to be independently and uniformly

distributed within a bit duration of the desired signal, so that, in the notation of

Section 5.3.2.2, pp(D, i) = 1 - (1 PL)#s(D), where ,ri(D) is the number of links

in D with the same destination (and hence code seq;u'nce) as link i. For the same
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reason, pl(i, j) = PL if i and j have the same destination, and pl(i, j) = 0 otherwise.

Finally, from the assumptions above, c(D, i) - 0. We only consider the throughput

equation for link 1, since all the other ones can be easily obtained by symmetry

considerations.

Link 1 is only allowed to transmit in states 0, {4}, and {5}. Thus from Equations

(5.3C) and (5.37) we have

S1

+p({4}) PB({4};0) PB({4};1) [1 -pvp({4}, 1)] T.({4}) (5.38)

where T,(D, i) is the component of index D U {i} of the vector T given by Equa-

tion (5.37). From our assumptions, we have PB(; 1) = *PB({4}; 1) = PE({5}; 1) =

1. We also have PB(O;0) = PB({5};0) = 1, pp(4, 1) = pup({5},1) = 0, and

pvp({4}, 1) = PL. CSMA with symmetric hearing possesses a product form solu-

tion for the steady-state probabilities {p(D)}, and thus p({4}) = (4/P 4)p(O) and

P(15}) = (A5/P5)p(O). Equation (5.38) then becomes

=P(O) IT,(01) + PB({4},0)(1PL)T,({4},i) + LT(s} ~

(5.39)

The probability of finding an idle receiver at node B is obtained from the system
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Fig. 5.13 Auxiliary Markov chain for a four node ring

of equations (5.16), which becomes

(p + A4 + As)PB (f1),1) = pi+ A4PB , 4},1) + APB1 })

(14 +At+ A1) PB (4,4) =P 4 + APB{ , 4),4) + AeP(4, 8},4)

( I. + 4) P8 ({1 ,1, ) = , [I- P (f{4}, 4)] + 4 PB ({ 1,1) (5.40)

(P I +P4) PB (f1,4),4) = 1 [1 - PB1 1 1, 1)] + pi PB({4},4)

(114 +,.1) PB({ ,8),4) = 114 +, PB({4),4)

The average successful channel utilizations T,(., 1) are obtained from the cor-

responding auxiliary Markov chain, shown in Figure 5.13, via Equation (5.37). The
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matrix R,(1) is given by

{1} {1,4} {1,.5}

Il{P1+A A5) A4(1 - PL) \ 5

Rs(i) = 11,4( P4 -(P + p4) 0 + (5.41)

{1, 5} 1A5 0 -(AI + AO

Taking, for analytical simplicity, p, =. =jg = 1, we get from (5.40)

Al +
PB({4},0) = 1- PB({4},4) = (1+ 1 A A+ (5.42)

and from Equations (5.37) and (5.41)

Tn(0, 1)= (2 + A4 + A5) 2 - A4(4 + A4 + A)PL

[(2 + A4 + AS) + A4PL]2  (5.43)

(2 + A4 + A 5)2 - A 4PL
T.({4}, 1) = T.({5}, 1) = [(2 + A4 + A) + AO4pL1]2

The normalizing constant p(4') for the product form solution is given by

p() = [(1 + G, + Gs)(1 + G4 + Gs) + (1 + G2 + G3)(1 + G6 + G 7 ) - 1]- 1, (5.44)

where Gi A Ai/pi. Introducing (5.42)-(5.44) in (5.39) we finally obtain the through-

put expression for link 1.

5.4 Summary and Conclusions

We presented in this Chapter the analysis of the class of protocols for which

the protocol decisions are completely specified by the state of the network trans-

mitters. The protocols in this class lead to decoupling between the description of
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the activity of the receivers and the activity of the transmnitters, and we refer to the

corresponding systems as decoupled systems. We described in Section 5.1 a Marko-

vian model for the representation of the transmitter activity. The states of this

process are sets of active links. The corresponding state space was characterized as

being formed by those states that can be reached from the idle state by means of

link activations only. We then wrote the equilibrium equations for the steady-state

probability distribution of this process, and investigated the conditions under which

this distribution possesses a product form solution. The existence of a product form

solution was shown to be equivalent to reversibility of the stochastic process, and

also to be equivalent to symmetry in the blocking between any two pairs of links.

This last conditions provides a criterion for the existence of a product form that is

easy to verify from the specification of the channel access protocol. We also showed

that, despite its analytical simplicity, the computation of the normalization factor

appearing in the product form solution is NP-hard.

In Section 5.2 we presented a Markovian model for the description of the ac-

tivity of the receivers. For this model we derived the equilibrium equations of the

corresponding stochastic process in a form that emphasizes the decoupling afforded

by the class of protocols considered in this Chapter.

Section 5.3 presented the derivation of throughput measures from (i) the steady-

state probabilities of the processes describing the activity of the transmitter and

receivers, (ii) the probability of a packet being successful, and (iii) the average length

of the successful packets. For the capture modes considered, the two last quantities

are computed by means of absorbing modifications of the Markov processes involved.

This Section also presented expressions for the probability of packet success, for

the average length of the successful packets, and for the average length of the

unsuccessful packets. Finally, the derivation of the throughput equations for a
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four-node ring network was given, as an example of application of the formalism

developed in this Chapter.
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Chapter 6

COUPLED SYSTEMS

We present in this Chapter the analysis of the more general class of channel

access protocols that do not lead to decoupling between the descriptions of the

activity of the transmitters and the activity of the receivers (i.e., that do not belong

to class D. In Section 6.1 we present a Markovian model for the description of the

network activity. We give the characterization of the state space of the associated

stochastic process, and derive the balance equations satisfied by its steady-state

probability distribution. In Section 6.2 we present the derivation of throughput

equations, using an approach similar to that of Chapter 5.
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6.1 Description of Network Activity

We introduced in Section 4.1.2 a network state description sufficient for the pur-

poses of implementation of the channel access protocol. This description contains,

for each node, the information of whether the node is transmitting, locked onto

a packet, or otherwise idle. For notational convenience, we shall use here a state

description that, while carrying the same information, is in a form closer to that of

Chapter 5.

6.1.1 State Description and Definitions

Since we consider that only the destination node of a link can lock onto the

link's transmissions, the state of the nodes of the network can be unambiguously

defined by adding to the state description of Chapter 5 the specification of which

active links are locked onto by their destination nodes, and which are not. We thus

represent the state of the network by D = (D+; D-), where D+ is the set of links

that are active and locked onto by their destinations, and D- is the set of links that

are active and not locked onto by their destinations. Given state D and link j E L,

we say that j E D if either j E D+ or j E D-. When notationally convenient, we

shall write j+ E D to mean j E D+ and j- E D to mean j E D-.

Definition 6.1.1 Given a network node n, we denote by E(n) the set of all links

whose source node is n and by V(n) the set of all links whose destination node is n.

Given a link j we denote by s(j) its source node, and by d(j) its destination node.

Definition 6.1.2 Given a state D, we designate by Ld(D) the set of links j such that

no link i E E(d(j)) is in D. In words, Ld(D) is the set of links j whose destination

nodes are not active in D.
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Definition 6.1.3 Given a state D, we designate by L,(D) the set of links j such

that no link i E V(s(j)) is in D + . In words, L,(D) is the set of links j whose source

nodes are not locked onto some transmission in state D.

Definition 6.1.4a Let j E C and D be a state such that j 0 D and j E L,(D). We

define D+j- A (D+;D-U{j}). Ifj E Ld(D), we define D+j + A (D+U{j};D_).

Definition 6.1.4b Let j E £ and D be a state such that j f D and j V L,(D). Let

I E D + n V(s(j)). We define D + j- A (D+ - {l}; D- U {j} U {/}). If j E Ld(D),

we define D + j+ -A (D+ U {j} - {1}; D- U {/}).

Definition 6.1.5 Let j E C and D be a state such that j E D. We define D - j =

(D + - {j}; D-) if j E D + , and D - j A (D+; D - {j}) if j E D-.

Given the assumptions of exponential packet length and scheduling delay dis-

tributions of Section 4.2, and of independent locking onto new packets by an idle

receiver of Section 4.1.3, it follows that the process {X(1) : I > 0}, defined as

X(t) = D if the state of the network at time t is D, is Markovian. We define in the

next Section the state space of this process.

6.1.2 State Space

Definition 6.2.1 We say that state D = (D+; D-) is admissible if (i) for every

pair of links ij E D we have s(i) :0 s(j), (ii) for every pair of links ij E D+

we have d(i) # d(j), and (iii) for every pair of links i E D + and j E D we have

d(i) $ e(j). These conditions correspond to the requirements that (i) there is only

one transmitter per node, (ii) there is only one receiver per node, and (iii) a node

cannot transmit and receive simultaneously.

Definition 6.2.2 We say that link i blocks link j if whenever i is active j is not

allowed to transmit by the access protocol. With the notation of Section 4.1.2,
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i blocks j if i E B4(j). We say that link i4 blocks link j if, whenever i is active and

locked onto by its destination node, j is not allowed to transmit, but is otherwise

allowed to if i is active but not locked onto. In the notation of Section 4.1.2,

i+ blocks j if i E BI(j).

Definition 6.2.3 State D1 = (D+; D-) is said to be protocol-reachable, or p-reach-

able for short, from admissible state D 2 = (D+; D-) if (i) for some link j E D2 we

have D1 = D2 j, (ii) for some link such that j f D2 and j not blocked by D 2 we

have D1 = D2 + j-, or (iii) for some link j such that j f D 2,j E Ld(D), and j not

blocked by D2 we have D1 = D2 + j+. In words, D1 is p-reachable from state D2

if D 1 can result from D2 either by the deactivation of a link active in state D 2, or

by the activation of some link not in D 2, according to the rules set by the access

protocol.

Definition 6.2.4 A state D is said to be p-reachable if there exists a sequence of

admissible states Do = 1, Di,-., Dq = D such that DL is p-reachable from Dk-1

for k= 1,...,q.

Definition 6.2.5 The state space S is formed by all p-reachable states.

Remark 6.2.6 Any of the operations defined in Definitions 6.1.4 and 6.1.5 when

performed over an admissible state produces an admissible state. Since 0 is admis-

sible, any p-reachable state is also admissible.

Remark 6.2.7 Depending on the particular values of the locking probabilities,

one of the transitions from D into D + j4 or D + j- may have zero probability

of occurrence, with the result that the corresponding destination state may be

transient. This point is illustrated by the two-node network of Figure 6.1, whose

state transition rate diagram under disciplined ALOHA and perfect capture is shown

in Figure 6.2. In the situation considered, states (0; {I1) and (0; {2}) have zero

probability of being entered from state 40, and are transient. Note however that
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Fig. 6.1 A two-node network

Fig. 6.2 State space for a two node network tinder disciplined ALO11A and perfect

capture

if, in the sittuation shown, an idle receiv'er has a nonzero probability of not locking

onto an incoming new packet (say, due to the presence of noise), then the dashed
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transitions in Figure 6.2 will have nonzero rates, and all the states will be recurrent.

If, in a general case, the locking probabilities are such that, for all states D E S and

links j such that j E D, j E Ld(D), and j not blocked by D, we have rP(j)(D;j) 5 0

or Pd(j)(D; j) 0 1, then all transitions from a state D E S into the states p-reachable

from D have nonzero rates, and all the states in S are recurrent.

Definition 6.2.8 State D = (D*;D - ) r S, with D+ = {h(,- .,lp} and D- =

{lp+,.. , Iq}, is said to be directly p-reachable if there exists a sequence Do =

4,D1,...,Dq = D of states in S and a permutation (il,.--,iq) of (1,..-,q) such

that, for k - 1,.,q, we have Dk = Dk-1 -+- l or Dk = DA:- + 17, according to

whether li, E D+ or lik E D-, respectively.

Employing the same arguments used in Section 5.1, we have the following re-

suits, whose proof we omit.

Lemma 6.2.9 If D E S is directly p-reachable and D1 = (D+; D-) is such that

D, g D2 (i.e., D+ C D + and D- C D-), then D1 is directly p-reachable.

Proposition 6.2.10 The state space S consists of q0 and all states D that are directly

p-reachable.

6.1.3 Balance Equations

In general {X(t)} is not irreducible. However, state 4 can be reached from any

state D E S in finite time with nonzero probability, by deactivating the links in

D. Let R? be the set of states D E S that are reachable from 0, and T be the set

of those that are not. Any two states in 1Z communicate, at least through state

40, and thus 1Z is an ergodic class. T is a transient class, since from each D E T

there exists a nonzero probability of reaching 4', and hence never returning to T.

We can then conclude from Corollary 7-9 and Theorem 7-10 of [Heym82] that the
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Markov chain {X(t)} possesses a unique steady-state distribution. We denote this

distribution by {p(D) : D E S}.

Given state D E S, let U(D) denote the set of links j E f such that j f D and j

is not blocked by D, let M(D) be the set of links j E C such that j f D and either

D +j+ or D +j- is in the state space S, and let J(D) be the set of links j E D such

that D is p-reachable from D - {j}. Suppose that X(1) = D, and that j E U(D).

Link j will become active in (t, t + At) with probability \Ajt + o(At). If j E Ld(D),

the activation of j will lead to state D + j+ with probability 'Pd()(D;j), and will

lead to state D + j- with the complementary probability, independently of the

previous history of the system. If j f Ld(D), the activation of j will lead into state

D + j- with probability one. If i E D, link i will become inactive in (t, t + At) with

probability pAt + o(At), leading the system into state D - i. Thus the state at

time f + At is completely determined by. the state at time t, and {X(t)} is seen to

be Markovian. Figure 6.3 shows the transitions out of a generic state D.

We now examine the transitions into state D. We consider separately the tran-

sitions from states with one more and one less active link than D.

(i) States with one more active link: For each I E M(D) n Ld(D), there is a

transition from both D + 1+ and D + I- into D, with rate pl. For each link

I E M(D) n Ld(D), there exists a transition from D + I- into D, also with rate

P1"

(ii) States with one less active link: Let j E J(D) n D+, which in particular implies

that j E Ld(D - j). Then there exists a transition from state D - j into D,

with rate P(j)(D - j;j)A . Let now j E J(D) n D-. If j E Ld(D - j), there

exists a transition from state D - j into D with rate [1 - (j)(D - j;j)]Aj; if

j f Ld(D - j), there exists a transition from state D - j into D with rate Aj.

Additional transitions may exist in the case of undisciplined protocols. In such
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me U(D)n Ld(D)

lED F D

Dm meU(D) rnLd(D)

Fig. 6.3 Transitions out of state D

a case if, for any j considered above, there exists i E D- n V(8(j)) and if the

state ((D -j)+ U {i};(D -j)- - {i})) exists in the state space S and does not

block link j, then there exists a transition from this state into state D, occurring

with the same rate as the transition from D - j into D.

Figure 6.. shows the transitions into state D. The solid lines show the transi-

tions that are common to both disciplined and undisciplined protocols. The broken

lines represent the transitions that only occur for undisciplined protocols. In the

diagram, we designate the states out of which these transitions occur by D*(j) - j.

As an example, we show in Figure 6.5 the state transition rate diagram for a
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Fig. 6.4 Transitions into state D
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p k2

Fig. 6.5 Transition rate diagram for a two node network under ALOIA

two node network under ALOIIA in which an idle receiver has a probability p of

locking onto a new packet. The transitions referred to above as only existing for

undisciplined protocols are those from state ({1}; 0) into (0; {1, 2}), and from state

({21; ,) into (0; (1, 2}).

The balance equations for disciplined protocols, obtained by equating the rate
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of transitions into and out of state D, are

P(D) 11DlJ + E \i]

- 3 p(D - j)Pd(j)(D - j;j)j
jEJ(D)nD

+ E p(D -j)A, + p(D - j)[l-Pd(3 ) (D -i;)]A
jEJ(D)nD- jEJ(D)nD-
jWL4 (D-j) jELd(D-j)

+ E p(D + i)p+ p(D +i+)p.
iEM(D) iEM(D)nLd(D)

(6.1)

Due to the cumbersome notation required, we omit the balance equation for undis-

ciplined protocols. The balance equations do not bring any special insight into the

problem, and their solutions do not possess special analytical properties. Any study

of coupled systems has to resort to a purely algorithmical solution of the problem,

which we shall discuss in Chapter 8.

6.1.4 Symmetric Protocols

We consider here a subclass of protocols that presents special advantages from

a computational point of view. We shall present here only the their definition and

basic properties. The computational advantages of this class of protocols shall be

discussed in Section 8.2.1.2.

Definition 6.4.1 We say that a protocol P is symmetric if, for any state D E C

and any j E D, D is p-reachable from D - j.

Example 6.4.2 Disciplined ALOHA is a symmetric protocol. Indeed, let D E S,

and let j E D. Since any state D E S is admissible, no link i E E(s(j)), i 9 j, is

in D, and hence in D - j. Similarly, no link i E V(s(j)) is in D + , and hence in

125



(D - j)+. But these are the only links that can block link j, and thus link j is not

blocked by D - j. It is now easy to see that D is p-reachable from D - {j}, both

for the cases where j E D+ and j E D-. If j E D+ , then no link I E E(d(j)) is

in D, and thus in D - j (i.e., I E L(D - j)). Hence D is p-reachable from D - j. If

j E D- then, from Definition 6.2.3, D is p-reachable from D - j. Thus Disciplined

ALOHA is symmetric.

Example 6.4.3 ID-BTMA, taken as a protocol not in class V, is not symmetric.

Let D E S and let j E D. We look for all possible links i E D, i # j (and hence

i E D -j), such that i blocks j, and thus cause D not to be p-reachable from D - j.

From the definition of ID-BTMA, the only possible candidates are links i E D such

that (i) s(i) = s(j), (ii) h,(j),,(j) = 1, or (iii) hd(i),.() = 1. Since all states are

admissible, condition (i) can never happen. If the hearing matrix is symmetric,

any i satisfying (ii) is blocked by j, and thus cannot coexist with j in the same

state D, since the one which is activated first will block the other. If the hearing is

not symmetric, it is possible for such link i to exist. Condition (iii) can occur if in

addition i is such that hd=),s(i) = 0 and j began before i (otherwise i and j cannot

coexist in a state D). An example of this situation is obtained from Figure 5.12 by

taking i to be link 5 and j to be link 1. Such i and j can coexist in a state D, such

as D = ({1, 5}; 0), where j is blocked by D - i. Thus ID-BTMA is not symmetric.

Definition 6.4.4 Given a protocol P, we define the symmetrization of P to be the

protocol obtained by redefining the blocking between all pairs of links i and j for

which there exists a state D E S such that i E D and j E D, and one of them,

say i, blocks j, while j does not block i (otherwise th y could not coexist in state

D E S). Here we make the distinction between i and i + , or j and j+, if necessary

for the purpose of the definition of the blocking between links (see Definition 6.2.2).

The symmetrization of P is defined to be such that any such i and j do not block
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each other.

Example 6.4.5 We derive here the symmetrization of ID-BTMA with symmetric

hearing. As we saw in Example 6.4.3, given link j and state D E S, D is not

p-reachable from D - j if there exists some i E D such that hd(i),,(j) = 1 and

d(i) : d(j). We then define the symmetrized protocol to be such that such i

does not block j. The definition of the symmetrized protocol in a network with

symmetric hearing is thus: link i blocks link j if (i) 9(i) = s(j), (ii) h'(j),3(j) = 1, or

(iii) hd(i),,(j) = 1 and hd(j),8(i) = 1. This last condition occurs if d(i) = d(j), or in

the situation depicted between links 1 and 5 in Figure 5.12.

Example 6.4.6 We consider now the symmetrization of LD-BTMA with symmetric

heating. Let D E S and j E D. We again look for links i E D that block j. From

the definition of the blocking in LD-BTMA, we see that any such link i is such that

either (i) i E D and s(i) = s(j), (ii) i E D and h,(j),,(J) = 1, or (iii) i E D + and

hd(i),,(j) = 1. In case (i) link i cannot coexist with j in D, the same happening in

case (ii) due to the assumption of symmetric hearing. However, case (iii) is possible

and asymmetry in blocking can exist, depending on link j. If j E D+ then j+

will also block i if hd(j),=(j )  1. If j E D-, then j does not block i. Since we

want symmetry in the blocking irrespective of whether j E D- or j E D+, we take

such i and j as not blocking each other in the symmetrized protocol. Thus the

symmetrization of LD-BTMA is defined to be the protocol in which link i blocks

link j if (i) s(i) = s(j) or (ii) h,(i),3() = 1, and is seen to coincide with CSMA.

6.2 Throughput Equations

The derivation of the throughput equations is identical to the one given in

Chapter 5. We shall state the main results, omitting the corresponding proofs
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when identical to those of Chapter 5.

6.2.1 General Throughput Equations

Let again the throughput Si of link i be defined as the long-run fraction of time

that link i is used for successful transmissions. Given link i, let U,(i) be the set of

states D E S such that i is not blocked by D and no link in E(d(i)) is active in D.

Thus, for D E U,(i), state D + i+ is p-reachable from D and the corresponding

transitions occur with rate Pd()(D; i)Ai. These are the only transitions of the

Markov chain {X(t)} that contribute to the throughput Si.

In order to compute Si, let us again define S(D, i) as the "partial" throughput

given by the long-run fraction of time that link i is used by successful transmissions

of i that start with the system in state D, in which case

Si= S(D,i).
DEU,(i)

In order to compute S(D, i) we consider the regenerative cycles defined by the

transitions from D into D + i+ . Let C(D, i) be the length of a typical cycle, and

T(D, i) the total time during a typical cycle that the channel is used by a successful

transmission over link i. Again we have that, with probability one ([Ross70]),

$(D, i) = E[T(D, i)]

E[C(D, i)]

Proposition 6.2.1 The expected cycle length E[C(D, i)] is given by

1

E[C(D, i)] = A 1d(i)(D; i)p(D) (6.2)

Proposition 6.2.2 The throughput Si of link i is given by

Si = Ai E p(D)Pd()(D;i)E[T(D,i)]. (6.3)
DEU,(i)
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As in Chapter 5, the value of E[T(D, i)] is computed from the particular capture

model considered.

6.2.2 Spread Spectrum Capture

We consider here the computation of E[T(D, i)] for the capture model of Sec-

tion 5.3.2.2, whose description we shall not repeat. We compute EfT(D, i)] by

means of an absorbing chain {XI(t)} with a definition similar to the one in 5.3.2.2.

Let A,(i) be the set of states such that i E D+. The state space of the chain

{Xia(t)} is formed by A,(i), together with two absorbing states A,(i) and J(i).

{X9(t)} enters Ac(i) whenever a packet loss occurs due to any of the mechanisms

described in 5.3.2.2, and enters 5(i) when i's transmission finishes successfully.

The mechanisms and rates of the transitions from D E A,(i) into Ac(i) are: (i) bit

errors with rate c(D, i), (ii) collisions due to the start of a new transmission over

link j, j E U(D) n E(d(i)), whose timing falls within i's vulnerable window, with

rate p1 (i,j)Aj, and (iii) packet loss due to the start of a new transmission over

link j,j E U(D) n E(d(i)), with rate Aj. The transitions of case (iii) occur only

for undisciplined protocols. Transitions into 5(i) occur with rate Pi from any

D E A,(i). Within A3 (i), {Xf(t)} transits from D E A,(i) to D - 1, 10 i, with

rate pl, to state D +j-,j E U(D)n Ld(D), with rate [1 -pt(i,j)] Aj, and to state

D + j+,j E U(D) n Ld(D) with rate [1 -Pd(j)(D;j)][l - p(ij)jAj.

E(T(D, i)] is the average time to absorption in J(i) over the set of sample paths

that terminate in ,(i), given that {Xj'(t)} started in D + i+ E .,(i). Let R*(i)

be the rate transition matrix of {XP'(t)}. This matrix has the structure shown in

Equation (5.25). Similarly to Proposition 5.3.11, we have

Proposition 6.2.3 Under the capture model of Section 5.3.2.2, the average time

the channel is successfully used by i's packet in a cycle, given that the packet is
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successfully locked onto by its destination, is given by

E(T(D, i)] = [I - p~(D, i)TO.JDi+, (6.4)

where TD+i+ is the component of index D + i+ of the column vector

T = ,R; 2 (i) 1, (6.5)

and R,(i) is the submatrix of the state transition rate matrix of {X(t)} whose

rows and columns correspond to the states in A,(i).

Results similar to Propositions 5.3.5-5.3.8 can also be derived for the current cap-

ture model. Due to their similarity, however, we shall not present them here.

6.3 Summary and Conclusions

We presented in this Chapter the analysis of the more general class of channel

access protocols that do not lead to decoupling between the descriptions of the

activity of the transmitters and the activity of the receivers. Section 6.1 introduced

a Markovian model for the description of the network activity. The state of the

corresponding process records the set of active and locked onto links, and the set of

active and not locked onto links. The state space of this process was shown to be

formed by the states obtained from the idle state by means of link activations only.

In this Section we also gave the form of the balance equations for the steady-state

probability distribution of this process. In Section 6.2 we presented the derivation

of throughput equations, using an approach similar to that of Chapter 5.
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Chapter 7

NON-MARKOVIAN SYSTEMS

The previous Chapters studied systems in which the packet lengths and the

scheduling delays have exponential distributions, and from which Markovian de-

scriptions result. We examine in this Chapter systems in which one or both of these

sets of random variables have general distributions. We only consider the class

of protocols studied in Chapter 5, for which the protocol decisions are completely

specified by the state of the transmitters. Section 7.2 introduces a class of processes

known as Generalized Semi-Markov Processes (GSMPs), that allow the representa-

tion of the systems we are interested in. Section 7.3 introduces two constructions

for the rescheduling point process, designated as Continued Renewal Rescheduling

and Restarted Renewal Rescheduling, that reduce to a Poisson process for expo-

nential rescheduling intervals, and formulates the resulting transmitter activity pro-

cesses as GSMPs. Section 7.4 investigates the existence of product form solution

for steady-state distrib'xtion of these processes, by studying the insensitivity of the

corresponding GSMPs with respect to the distributions of the packet lengths and

scheduling delays. For Continuous Renewal Rescheduling with Poisson reschedul-

ing processes and for Restarted Renewal Rescheduling with arbitrary rescheduling
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processes these conditions are found to be identical to those found in Chapter 5

for the case of exponential packet lengths. Continuous Renewal Rescheduling with

arbitrary rescheduling intervals is found not to possess in general a product form

solution. Section 7.5 makes a bridge between the processes considered here and

some queueing processes, by showing that the process describing the activity of the

network links can be obtained as the state of a suitably defined queue.

The original goal of the study of the case of general packet length and scheduling

delay distributions was to find throughput expressions that would constitute an

extension of those given in Chapter 5 for the exponential case. For this purpose,

especially defined GSMPs have to be constructed such that the link throughputs

are directly obtained from their steady-state distribution. Unfortunately, these

GSMPs are not insensitive with respect to the packet length and scheduling delay

distributions, with the consequence that effectively it is not possible in general using

this formalism to compute the iunk throughputs. Nevertheless, we present here the

results on the existence of product form solutions due to their intrinsic theoretical

interest. In this chapter we use separate notation conventions, to conform to the

standard usage in the theory of OSM Ps.

7.1 Introduction

Let X(f) be defined, as in Chapter 5, as the set of links which are active at

time i. We shall consider in this Chapter the case where link i E L has packets

whose lengths have a distribution function Bi(.), with

100 z dB1 (x) = gA~l <00o,
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and has scheduling delays whose lengths have a distribution function A('), with

0 0 dAi(x) =A < oo.

We shall on!y require that each A(.) and B(.) possess a positive density almost

everywhere. This condition will ensure the existence and uniqueness of a stationary

distribution for {X(t) :t > 0}.

In this general case {X(1) : t > 0} is no longer Markovian. However, it possesses

the structure of a general class of processes known as GSMPs. We shall use general

properties of these processes to obtain conditions under which {X(t) : t > 0} has

a product form steady-state distribution. The existence of a product form will be

seen to be closely related to the insensitivity of the steady-state distribution with

respect to the moments of second and higher orders of the distributions A(') and

B(.), i E L.

7.2 Generalized Semi-Markov Processes*

Consider a process {X*(t) : t > 0} which, at an arbitrary instant t > 0, can be

in any one of the states g of a finite state space G. Each state g is itself a finite set

of elements s of a finite set S. (These elements can represent, for example, links in

a packet radio network, or customers in a closed queueing system.) It is required

that, for each s E S, there exist at least one g E G such that a E g. Suppose

that X*(t) = g. To each element a E g (which we shall say to be active at time

t) there is associated a residual lifetime Y(t) > 0, determined as described in the

following. We let Y(t) = (YI(i))8 2 be the vector of the residual lifetimes of the

*This section is a summary of the main definitions and results in [Scha77] and [Scha78a]. We will

try to conform to the notation of these papers whenever possible.

133



elements active at time t. The lifetimes of the elements which are active at any

given time decrease at unit ratet, X*(t) remaining in state g as long all Y,(1) are

positive. Eventually the lifetime of one of these elements will reach zero (which we

will refer to as the "death" of that element), at which time X*(f) jumps from state

g to a new state g' E G. It is assumed that no two elements can die simultaneously.

The state transitions are specified by a family of transitions probabilities

P={p(9,s,'):9EG, sEg},

where p(g, s,g') is the probability that the next state of X*(t) is g' E G given that

the present state is 9 E G and that the state transition is caused by the death of

s E g. It is required that p(g, a, g') = 0 unless 9 - {s} C g' (i.e., it is required that

all other elements which are active in the old state remain active in the new state).

Upon entering state g' the residual lifetimes of the elements of g' are determined

as follows: the elements in g - {s} keep the residual lifetimes they had at the time

the state transition took place; a new element s E g' - (g - {s}) is assigned a

residual lifetime which is drawn, independently from the past, from a nonnegative

distribution p,,, with distribution function F,,(.), and mean -q-1 < oo. (These

residual lifetimes continue to decrease at unit rate after the system enters state g'.)

X(0) is chosen to be some arbitrary state go E G, and the initial residual lifetime

vector Y(0) is obtained by assigning to the element s E go a residual lifetime Y,(0)

drawn from the corresponding distribution W,. These distributions are assumed to

be such that

(Cl) no two deaths can occur simultaneously at any time, and

(C2) the resulting X*(i)-process has a unique stationary distribution.

tSee [Scha78a] for a generalization which allows a countable state space, and arbitrary rates of
decrease for the residual lifetimes of the active elements. See also [Hend83] for an alternative
construction of a GSMP.
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Remark 7.2.1 In general, (Cl) is easy to verify directly. A sufficient condition for

(C2) is that all distributions involved possess a positive density almost everywhere

([Scha78b]). In some cases it may be possible to obtain less restrictive conditions

sufficient to ensure (C2).

Definition 7.2.2 The collection E = (G, S, p) is called a generalized semi-Markov

scheme (GSMS); the process {X*(t) : t > 0} is called the generalized semi-Markov

process (GSMP) based upon E by means of the family {w : s E S}; the process

{X*(), Y(t) :t > 0} is called a supplemented GSMP.

Definition 7.2.3 A GSMS is said to be irreducible if, for every pair 9, 9' E G,

there exist finite sequences (go,9g, ... , g,),gi E G, with go = g and 9n = g', and

('1,... a,), ai E S, such that p(g, s1, g) P(g1, a2,g2)". P(gn- 1, On, 9') > 0.

Definition 7.2.4 Let E = (G, 5, p) be an irreducible GSMS, and 4P(E) the collection

of all families V = {Cp, : s E S} of distributions concentrated on (0, oo) which imply

the existence of a unique stationary distribution for the corresponding supplemented

GSMPs based upon E. Let 4' be a nonempty subset of O(E). E is called 4)-

insensitive if every GSM.' based upon E by means of an element of 0) has the same

stationary distribution.

Notation Let S' C S. We denote by O)s,(fl, : a E S) the family of distributions

{ p E $t(E), w. - Eqo(.) for s V S', V., arbitrary with mean 77;1 for a E S'),

where E,,(.) represents an exponential distribution with parameter 1?. We also set

(77, : a E S) A 0{,0}(1, : s E S).

We now state the main results of interest for our applications. It is assumed

throughout that the GSMS E = (G, S, p) is irreducible.

Proposition 7.2.5 An GSMS E is Os,(7, : a E S)-insensitive if and only if E is

4 s,(q, : a E S)-insensitive for every a' E S'.
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Proposition 7.2.6 An GSMS E is Is ,(tia : E S)-insensitive if and only if the

stationary distribution of every supplemented GSMP based upon E by means of a

family p E Obs is of the form

P{X(t)=g,Y,(t) <z,,s EgnS'}--p9  0 'HT.' (1 -Fs(t))dt,
cEgnS'

where {ps : g E G} is the steady-state probability distribution of the GSMP based

upon E by means of the exponential family in s'('i : s E S).

Remark 7.2.7 {(p : g E G} is the normalized solution of the system of equations

P#i7,s= E pP(g',, , g),, g EG. (7.1)
SEO 0'EG *Es'

These are the global balance equations for the GSMP based upon E by means of

the exponential family in 4'(, : s E S).

Proposition 7.2.8 E is 4,o(q, : 8 E S)-insensitive if and only if there exists a

distribution {p.9 g E G} that satisfies (7.1) and

Pg IN= E py, p(g',s,g) 7,+ , pgp(g',so, g)7,0 , g E Go, (7.2)
g'gGo SEg' S'EGo

where Go = {g E G : so E g}. In the case where such distribution exists, it is the

stationary distribution of the GSMP based upon E by means of 4, 0(,, : s E S).

Remark 7.2.9 (7.2) is a set of local balance equations for the GSMP based upon E

by means of the exponential family in aI, (q. : E S), equating the rate of transi-

tions out of state g due to the death of so to the rate of transitions into g due to

the birth of so.
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1.3 Formulation of {X(t)} as a GSMP

It is our goal in this Section to formulate a GSMP {X*(t) : t _ 0} representing

the link activity in the network and that, for exponential packet length and schedul-

ing delay distributions, coincides with the process {X(t) : t > 0} of Chapter 5. The

formulation of this GSMP is not unique, and different formulations will possess

different properties. We consider two choices, corresponding to different ways of

defining the process of the rescheduling points. One such way, that we designate by

Continued Renewal Rescheduling (CRR), consists of taking the rescheduling point

process associated with link i to be a renewal process with interrenewal times pos-

sessing the distribution function A&(). At each such point the state of the system

is examined and, depending on the protocol, a packet transmission either takes

place or is inhibited. The fact that the scheduling point process is a renewal pro-

cess implies that the rescheduling interval after a rescheduling point that gives rise

to a packet transmission is drawn from the distribution A&(), and thus the next

rescheduling point can occur while the packet transmission takes place (in which

case it is ignored). An alternative way, which we call Restarted Renewal Reschedul-

ing (11111), does not attempt to generate a new rescheduling point while a packet

is being transmitted. Instead, it waits for the end of the packet transmission, at

which time, say t, it draws a random interval of length W, with distribution A&(),

from which the next rescheduling point is generated, occurring at time i + IV,. In

this way the rescheduling point process is no longer a renewal process. As we shall

see, these two systems differ in some of their properties.

We shall now construct Generalized Semi-Markov Schemes E, = (GI, S, pi)

and E~2 = (G2 , S, P2) such that the associated GSMPs represent the link activity

of the CRR and RRR systems, respectively. The states in the collections Gi will

be formed by the set of active links, whose residual lifetimes represent the residual
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service time of a packet, and by a set of "fictitious" elements, one for each link, whose

residual lifetimes keep track of the time left until the next rescheduling point of the

corresponding link. In the CRR case, these elements are "alive" in all states, thereby

generating a renewal process for the corresponding rescheduling point process. In

the RRR case, each such element is only alive as long as the corresponding link is

inactive. After a death of the element from which an activation of the corresponding

link results, the element is not born again, this event only taking place as the link

is deactivated.

7.3.1 Continued Renewal Rescheduling

Let ai, i E Z, be the element whose deaths correspond to the occurrences of the

scheduling points for link i, and generate the state transitions corresponding to the

activations of link i if unblocked. Define A A {aal, -.. ,aL}, and let the states

g E D be of the form g = Au D, where D E S is a set of active links. The death of an

element j E D corresponds to the deactivation of j. The GSMS E, = (G1, S, pi) is
A A

formally defined in the following way. Let S A AUC, and G1 A {g = AuD : D E S}.

The transition probabilities {p1(g, s,g') :9,9' E G, a E g} are defined by

1, if s "a and j E U(D) and g'=g U {j}

or a - ai and j V U(D) and g' g g
P1(9, s,9') =

or s = j and j E D and g' =- {J},

0, otherwise.

We associate with this GSMS a family W = (W. : s E S} of residual life-

time distributions, such that the distribution paj, i E Z, is the scheduling delay

distribution Ai(.) for link i and the distribution vi, i E C, is the packet length

distribution Bj(') for link i. Let {X*(t) : f > 0} denote the GSMP based upon

138



El by means of the family W, and suppose that X*(t) = A U D, D E S. We have

that X*(t + At) A A U (D U {i}), i E U(D), if element i became active in the

interval (t, t + At), and X*(t + At) = A U (D - {j}) if element j E D died in the

interval (t, t + At). The GSMP thus obtained is equivalent to X(t) in the sense

that X*(t) = 4 U X(t). It follows that, if we again let {p(D) : D E S} denote the

stationary distribution of {X(t) : t > 0}, then P.AUD = p(D).

7.3.2 Restarted Renewal Rescheduling

Given D E S let AD be the set of the elements ai E A such that i V D. The

GSMS E2 = (G 2, S, p 2) is defined similarly to E1 of 7.3.1. Let S be as defined in

7.3.1, and G2 - {g = AD U D : D E £}. The transition probabilities {P2(g, s,g')

9, 91 E G, s E g are given by

1, if s=aj andjEU(D) andg' =gU{j}-{aj}

or a = aj and j f U(D) U D and g' = g
P2(g, s,g) =

or s = j and j E D and g'- gU{aj} - {j},

0, otherwise.

We associate with this GSMS the same family V of lifetime distributions defined

in 7.3.1. The GSMP {X*(t) : t > 0} based upon E2 by means of p is equivalent

to X(t) in the sense that X*(i) = AX( u X(t). Their stationary distributions are

related by PADUD = p(D).

It is immediate to verify that both GSMSs El and E 2 are irreducible.
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7.4 Existence of a Product Form Solution

Equation (5.4) does not make sense in the general case. Here we shall say that

{X(t) : t > 0} has a product form solution if its stationary distribution satisfies

A-p(D) = p(O) 1 -, D E S. (7.3)
iED Ai

Obviously, the existence of a product form solution for {X(t) : t > 0} when some

set of S' of variables has an arbitrary distribution, all others being exponential, is

equivalent to (i) AIs,-insensitivity of {X*(t) : t > 0}, and (ii) the existence of a

product form solution for the version of the GSMP in which all residual lifetimes

are exponential (i.e., the GSMP corresponding to the case where all variables in S'

are exponentially distributed, which we shall refer to as the "exponential version"

of the GSMP). We shall study separately the cases where (i) only the packet length

distributions, and (ii) only the rescheduling delay distributions, are general, the

remaining random variables (rescheduling delays in case (i), and packet lengths in

case (ii)) having exponential distributions. The following Proposition is valid for

both the CRR and the RRR cases.

Proposition 7.4.1 For arbitrary packet length distributions and exponential sched-

uling delay distributions, {X(t) : t > 0) possesses a product form solution if and

only if J(D) = D, for all D E S.

Proof: Let {X(I) : t > 0} have a product form solution. In particular, the expo-

nential version of the GSMP will have a pro.*act form solution. Proposition 5.1.14

then implies that J(D) = D, for all D E S. Conversely, let J(D) = D, for all D E S.

Again from Proposition 5.1.14, the exponential version of the GSMP has a product

form solution (7.3). We want then to prove that the GSMP is 4,,-insensitive. Recall

that the distribution (7.3) is a solution of the global balance equations (7.1). We
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shall now show that (7.3) also satisfies the local balance equations (7.2) for any

io E £ for both the CRR and RRR strategies.

(i) CRR

Let io E C, and let state g = AU D be such that io E D. The rate of transitions

out of g due to the death of io (i.e., due to the termination of i0's transmission) is

p(D)ujo. The only states g' = A U D' in which the birth of io will lead into g are

those for which D' = D - {io}, in which case a transition into g takes place with

rate lioEJ(D)}Aio. Thus the local balance equations (7.2) take the form

PAuDIio = P.AU(D-({io}) 1{ioEJ(D)} Ai0, D D {io}, D E S (7.4)

or, given that J(D) =D,

PAUD = io PAU(D-{io}), D D {i0}, D E S (7.5)

which is indeed satisfied by (7.3). Proposition 7.2.8 then allows us to conclude

that the GSMP {X*(t) : t > 0} is CO-insensitive for all i0 E C which, together

with Proposition 7.2.5, implies that it is 4 ,-insensitive, and hence its stationary

distribution is also given by (7.3). Thus {X(t) : t > 0} possesses a product form

solution.

(ii) RRR

Let i0 E 4, and let state g = AD U D be such that io E D. Again in this case

the only transitions into state g due to the birth of i0 are from states g, = AD' U DI

such that D' = D - {i,}. By repeating the argument of (i), we conclude that the

local balance equations (7.2) take the form (7.5), and thus that {X*(t) :t > 0} is

also in this case tc-insensitive. I
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Proposition 7.4.2 Continuous Renewal Rescheduling does not possess in general a

prodact form solution for general scheduling delay distributions.

Proof: We show that insensitivity (and hence a product form solution) does not

exist with respect to the distribution of the times between occurrences of two suc-

cessive scheduling points. For that purpose, let us apply Proposition 7.2.8 by taking

*o to be aio, io E C. Since the element a10 is present in all states, the local balance

equations (5.2) become

PAUD A to - E PAUD' p(A U D, ao, .A U D) Aio, D E S.
DIES

By retaining only the appropriate nonzero probabilities, this equation gives

I(PAUD Ao + PAU(D-{io}) Ajo, if io E J(D)

PAuD Aio = j0, if io E U(D) (7.5)

PAUD Aio, if io E C - U(D) - J(D)

Clearly this system of equations is not compatible with (7.1), since for D such that

io E U(D), (7.5) requires PALuD = 0, whereas (7.1) is known to have a strictly

positive solution. The conclusion then follows from Proposition 7.2.8. [

Proposition 7.4.3 Restarted Renewal Rescheduling with general rescheduling delay

distribution and exponential packet length distributions possesses a product form

solution if and only if M(D) = U(D), for all D E S.

Proof: Let {X(t) : t > 0} have a product form solution. By Proposition 5.1.14,

M(D) = U(D) for all D E S. Conversely, let M(D) = U(D) for all D E S. Again

from Proposition 5.1.14 we have that the exponential version of the GSMP has a

product form solution. We now show that the GSMP is I, 4 -insensitive. Let i0 E L,

and consider aio. Let g = AD U D be such that ao E g, which in particular implies
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i0 f D. For the construction of the local balance equations (7.2) we have to look

for the states g' = AD' U D' that can lead into g via the birth of aio. This event can

happen in one of two ways: (i) in the transition from g' = ADU(io) u(DU {io}) into

9, if i0 E M(D), and (ii) in the transition from 9' = 9 into g, if i, V U(D). Thus

the local balance equations become (recall that U(D) g M(D))

P(AD-{a,0 ))U(DU{io}) Pio, if j E U(D),

PADUD Aio P(AD-{ao})U(DU{io}) .io + PADUD Ai 0, if j E M(D) - U(D),

PADuD Aio, if j € M(D).
(7.6)

Since by hypothesis M(D) = U(D), (7.6) reduces to

P(AD-{a°1)U(DU{io)) = io PADUD, iO E U(D)

and

0=0, io M(D)

which is compatible with the solution (7.3) of the global balance equations (7.1).

U

As a direct consequence of Propositions 5.1.13, 7.4.1, and 7.4.2 we have (note

that only the blocking properties of the protocol, and not the form of the service

time distributions, are relevant for the proof of Proposition 5.1.13)

Proposition 7.4.4 (Criterion for the existence of a product form-Continuous Re-

newal Rescheduling) Under Continuous Renewal Rescheduling in a system with

general packet length distributions and exponential scheduling delay distributions,

a necessary and sufficient condition for a channel access protocol, together with

a given network topology and traffic requirements to have a product form solu-

tion is that, for all pairs of used links i and j, link j blocks link i whenever link i
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blocks link j. In general, a product form solution does not exist when some of the

scheduling delay distributions is not exponential.

From Propositions 5.1.13, 7.4.1, and 7.4.3 we obtain

Proposition 7.4.5 (Criterion for the existence of a product form-Restarted Re-.

newal Rescheduling) Under Reslarled Renewal Rescheduling in a system with gen-

eral packet length and scheduling delay distributions, a necessary and sufficient

condition for a channel access protocol, together with a given network topology and

traffic requirements, to have a product form solution is that, for all pairs of used

links i and j, link j blocks link i whenever link i blocks link j.

Remark 7.4.5 It is possible for a given network configuration and access protocol

to be insensitive with respect to the packet length disLributions of a proper subset

of the links of the network, and nevertheless not have a product form solution. In

terms of (7.1) and (7.2), this corresponds to the solution of (7.1) satisfying (7.2)

for some, but not all, links of the network. As an example, consider the network

of Figure 5.1 operating under the ID-BTMA protocol, and with nonzero traffic

requirements over all links. It is easy to see that, when io is taken to be either

link 3 or 4, the corresponding system (7.4) is compatible with the solution (7.3) of

(7.1), and hence insensitivity exists with respect to the packet length distributions

of these links. On the other hand, if we take io to be any of the other links in the

network, it is always possible to find states D E S such that io V J(D), for which

(7.4) then requires p(D) = 0. This requirement is incompatible with (7.3), thus

showing that insensitivity does not exist with respect to links 1, 2, 5 and 6.

R~emark 7.4.6 In the construction of a GSMP given in Section 7.2, an element

of a E S is assigned, at the times of its birth, lifetimes that can be viewed as

the interarrival times in the renewal point process associated with the distribution

p.. It can be shown that the results presented in Section 7.2 remain valid if the
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successive lifetimes assigned to an element a E S are obtained as the interarrival

times of an arbitrary stationary point process with intensity q, ([Scha78b]). This

implies, in particular, that an insensitive system, as defined in Section 7.2, is also

insensitive with respect to the choice of the stationary point process from which the

successive lifetimes of a given active element are generated.

7.5 Formulation of {X(t)} as a Queueing Process

The process {X(t) : t > 0}, can be formulated as the queueing process of an

infinite server queue with state-dependent arrivals. Although this formulation does

not yield new results over the one presented in Section 7.3 and 7.4, it establishes

the connection between the process of the active links and some processes studied

in the queueing literature. Consider an infinite server queue with L classes of

customers (recall that L represents the number of used links in the network), each

class being uniquely associated with each used link in the network, and vice-versa.

The successive service times of the customers of class i are i.i.d. random variables

with distribution function B('). The arrival processes depend on the state of the

queue, and differ according to whether a CRR or RRR strategy is used. The state

of the queue is defined as the set of classes of customers present in the queue.

Under CRR, each customer class has associated with it a renewal process in

which the interrenewal times have the distribution of the scheduling delay of the

link corresponding to that customer class. A renewal point for the process associated

with link i gives rise to a customer arrival if and only if at that renewal epoch the

state D of the queue does not block link i.

Under RRR, arrivals of class i are g-erated as follows: as soon as a class i

departure occurs, a renewal process is started with interrenewal times with distri-
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bution A&(). The first such renewal time that finds the queue in a state D in which

i is not blocked results in a class i customer arrival, at which time the renewal

process is stopped. When the customer departs, the process is repeated.

When the scheduling delay distributions are exponential, both of these methods

give rise to nonhomogeneous Poisson arrival processes, whose rate at time f is a

function of the queue occupancy at that time, in the following manner: if D is

the set of customer classes present in the queue at time t, then the arrival process

for class i customers has rate Ai whenever the corresponding set of links D (in the

packet radio network) does not block link i, and has rate 0 otherwise.

If we denote by X(t) the set of customer classes present in the queue at time f,

and restrict X(O) to belong to the collection S (defined in Section 5.1.1), then at

any subsequent time i we still will have XQt) E S. It is easily seen that this process

{X(1) : t 0) coincides with the process defined in 7.1 in terms of the link activity

of the packet radio network. The correspondence between both models is made by

interpreting the arrival of a class i customer to the queue as the activation of link

i in the packet radio network, and its departure as the deactivation of the same

link. This formulation explains some of the similarities between the properties of

the process describing the joint activity of the transmitters in the network, and the

properties of some queueing systems, e.g., those considered in ([Chan77]). ((Ke11761)

also studies queues with state-dependent arrivals which are equivalent to the ones

described here in the cases where a product form solution exists.

7.6 Summary and Conclusions

We studied in this Chapter the existence of a product form solution for the

steady state probabilities of the transmitter activity process for protocols of class
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V, when the packet lengths or the rescheduling intervals do not possess an exponen-

tial distribution. The resulting non-Markovian processes belong to a class known

as Generalized Semi-Markov Processes (GSMP's). We gavre in Section 7.2 the def-

inition of a GSMP, and presented the properties of a GSMP that are of interest

for our applications. The main such result states that the steady-state distribution

of a GSMP depends only on the means of the random variables that define it if

and only if the (Markov) process obtained by replacing those random variables by

exponential variables with the same means satisfies a given form of local balance.

In Section 7.3 we introduced two constructions for the rescheduling point process,

designated as Continued Renewal Rescheduling and Restarted Renewal Reschedul-

ing, that reduce to a Poisson process for exponential rescheduling intervals, and

formulated the resulting transmitter activity processes as GSMPs. We then applied

in Section 7.4 the insensitivity property stated above to the study of the conditions

under which each of the rescheduling mechanisms considered leads to a product

form solution. For Continuous Renewal Rescheduling with Poisson rescheduling

processes and for Restarted Renewal Rescheduling with arbitrary rescheduling pro-

cesses these conditions were found to be identical to those found in Chapter 5 for

the case of exponential packet lengths, i.e., symmetry in link blocking. Continu-

ous Renewal Rescheduling with arbitrary rescheduling intervals was found not to

possess in general a product form solution. In Section 7.5 we formulated the trans-

mitter activity process as the state of a queue with state-dependent arrivals, thus

establishing a connection between the processes considered in this work and some

processes considered in the queueing literature.
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Chapter 8

NUMERICAL COMPUTATION:
ALGORITHMS

The previous Chapters focused on the derivation of expressions for the link

throughputs, given the network specification and the sets 118J1i)Cof average

message lengths and {Aqiij,EC of link rescheduling rates. We discuss in this Chap-

ter algorithms for the numerical evaluation of these expressions and determination

of network capacity. Most of the algorithms presented in this Chapter have been

incorporated into a general computer package for the capacity analysis of packet

radio networks.

Section 8.2 is devoted to the computation of the link throughputs given the Chan-

nel access protocol, the capture mode, and the operating parameters (rescheduling

rates and average message lengths) of the network. Subsection 8.2.1 considers the

more general protocols of Chapter 6, which do not lead to decoupling between the

activity of the transmitters and the activity of the receivers. These protocols re-

quire the numerical setting up and solution of the balance equations of the processes

involved. The enumeration of the state space of these processes is reduced to the

traversal of a directed graph, and a breadth-first search (bfs) is considered for this
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purpose. A number of properties of the bfs enumeration of the state space are

then established. From these properties, a characterization of the order in which

states are enumerated and an eficiert algorithm for that enumeration are derived.

Finally, algorithms and data structures appropriate for a computer-implemented

enumeration of the state space, setting up of the balance equations, solution of the

systems of linear systems involved, and computation of throughput, are described.

Subsection 8.2.2 considers the restricted class of protocols considered in Chapter

5, which lead to decoupling between the activity of the transmitters and of the

receivers, Its contents parallel those of Subsection 8.2.1. Section 8.3 considers the

problem of, given a set of link throughput requirements, solving for the network

operating parameters that attain those requirements. This Section presents a fixed-

point iteration algorithm for the solution of the problem. Section 8.4 considers the

problem of finding the capacity corresponding to an a priori given traffic pattern.

Two strategies are presented: (i) a trial-and-error binary search method, at each

step of which the feasibility of a tentative value of the capacity is tested, and (ii) a

parametric method that, given an arbitrary linear functional h of the rescheduling

rates, finds the network throughput as a function of the value assigned to h, and

then obtains the capacity by maximization over that value.

8.1 Introduction

We consider algorithms for the solution of the following three basic types of

problems, each one of which builds upon the previous ones for its solution:

1. Link throughput computation: given a set of rescheduling rates, de-

termine the resulting link throughputs.
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2. Solution for desired throughputs: given a set {Sij}(ij)eC of desired

link throughputs, determine if it is feasible; if feasible, find the set of

link rescheduling rates that attains it.

3. Capacity determination: given a traffic pattern matrix A = [cij] com-

patible with the hearing matrix H = [hii], find the supremum of the

set of values of S for which the set of link throughputs {Sii = S ai:

(ij) E C} is feasible.

In 3. above, the matrix A is said to be compatible with H if hii = 0 implies aii = 0.

The solution of 1. requires the solution of the global balance equations of the

associated Markov chain, and the computation of the average successful channel

utilization per transmission attempt. For the purpose of the latter, we consider

throughout this Chapter the capture model of Section 5.3.2.2. We shall discuss

mainly the more general case of protocols not in class V and capture modes not in

class C1, for which we shall give algorithms and data structures for the construction

of the state space and the Q-matrix of the corresponding Markov chains, the setting

up of the systems of equations (6.5), and the evaluation of (6.3). We shall then

discuss briefly the solution of 2., viewed as a system of nonlinear equations

Si = Gii fii(G), (i,j) E C

on the unknowns G, with {Sj}(ijj)E" given. Finally, we shall present two methods

for the solution of 3. and discuss their relative merits.
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8.2 Link Throughput Computation

8.2.1 General Protocols

The general case of protocols not in class V requires the solution of the global

balance equations (6.1) for the steady-state probabilities, the solution of the system

of equations (6.5) for the average successful durations of the different link trans-

missions, and the computation of the sums in (6.3). As implemented in a computer

program, the computations comprise mainly two stages, the details of which wve

examine in the following sections:

1. Setup: construction of the state space and Q-matrix of the main and

auxiliary Markov chains;

2. Computation: solution of the sets of linear equations giving the steady-

state probabilities and the packet average successful lengths, and com-

putation of (6.3).

8.2.1.1 The Enumeration of the State Space as a Graph- Theoretical
Problem

Consider the directed graph (digraph for short) G corresponding to the state

transition rate diagram of the D arkov chain under consideration. This digraph has

a set of vertices V = S, and a set of edges E such that the arc (D, D') from D

into D', with D, D' E S, is in £ if and only if the transition from D into D' is

allowed under the rules of the access protocol*. A traversal of the digraph G will

provide an enumeration of the state space S, with different traversals giving different

orderings of the states, and thus different structures for the resulting transition

*Note that, under some capture modes, some of these transitions may have zero probability of
occurrence.
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rate matrix (or Q-matrix). At the same time, the successive examination of the

arcs emanating from each vertex found during the traversal process will give an

enumeration of the nondiagonal entries of the Q-matrix. We can thus reduce the

problem of construction of the state space and the Q-matrix to that of traversal of

the vertices and labeling of the arcs of the digraph G.

The two most important types of systematic graph traversals are depth-first

and breadth-first [Aho83]. For reasons to be discussed later, we shall adopt for

our algorithms a breadth-first traversal, or breadth-first search (bfs). Given its

importance, we give now a brief description of it.

At any stage of a breadth-first search, each vertex in G is marked either visited

or unvisited, and either searched or unsearched. Given a visited and unsearched

vertex v, the algorithm marks that vertex as searched and visits, in succession, all

vertices adjacent from* v which are still unvisited, marking them as visited. When

all vertices adjacent to v have been exhausted, a previously visited but unsearched

vertex is selected, and the process is repeated. The visited unsearched vertices are

selected to be searched in the order in which they were first visited. If at some stage

no more visited unsearched vertices exist, an existing unvisited vertex is selected as

starting vertex and marked visited, and the procedure is repeated until no more

unvisited vertices are left. Initially all vertices are marked unvisited and unscarched.

Given a starting vertex, the algorithm visits it (marking it as visited), and then

proceeds to apply to it the procedure described above.

As an example, consider the diagraph of Figure 8.1. Let the unvisited vertices

adjacent to a vertex be visited in alphabetical order of their labels, and vertex A be

chosen as the starting vertex. Vertex A will then be marked visited and searched,

and vertices B and E visited (and so marked), in this order. Since there are no

*Given two vertices i and j of a directed graph such that there is an arc from i into j, vertex i is
said to be adjacent to vertex j, and vertex j is said to be adjacent from vertex 1 (cf. [Law176]).
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Fig. 8.1 Digraph for example of breadth-first search

more unvisited vertices adjacent from A, the next visited and unsearched vertex, in

this case B, is marked searched, and all unvisited neighbors of it are visited. In this

way, vertices C and F are marked visited, and no more unvisited vertices adjacent

from B exist. The next visited andunsearched vertex is E, which is thus marked

searched, but which does not have any unvisited vertices adjacent from it. The next

visited unsearched vertex is C, which is then marked searched, and from which D

is visited, and thus marked. Vertices F and C, still marked unsearched, are next

searched, but no more unvisited vertices exist. Thus the breadth first traversal

yields the enumeration ABECFD of the vertices of the digraph. Note that, as the

vertices adjacent to each vertex being searched are examined to determine whether

they have been visited or not, the edges of the graph are also enumerated.

For a question of clarity, we shall consider in the following the construction or

the state space S separately from the construction of the Q-matrix, although in

practice the two are done simultaneously.

8.2.1.2 Enumeration of the State Space

Given the vertex being currently searched, we are required by the 6fs algorithm
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to visit (and thus generate) all unvisited vertices adjacent to it. In our case, the

vertices adjacent to a given vertex (state) D E S are obtained by either deactivating

a link i E D, or activating a link j E U(D). The following Lemma tells us that

only the states obtained by activating a link j E U(D) need to be considered when

looking for unvisited states adjacent to state D, as long as the breadth-first search

is started in state d0. In the following, N designates the number of nodes in the

network.

Lemma 8.2.1 Let c(D) be the number of links active in state D, and let Sm

{D E S : c(D) = m}, for m = 0,..., N. When performing a breadth-first search of

the state space, started in state 0, the following are true:

(i) Any state in S, n = 1,..., N, is visited (and thus searched) before any other

state in Sm, m > n, and after any other state in Sk, k < n;

(ii) When any state in S,,, n = I,..., N, is searched, only states in S,. +1 are visited

from it (i.e., all states in Sm, m < n, have been visited);

(iii) When all the states in S., n = 1,..., N, have been searched, all states in S,+1

have been visited.

Proof: (iii) is a direct consequence of the fact that, by Proposition 6.2.10, any

state in S, is adjacent from (i.e., p-reachable from) some state in S,- 1 . Rather

than give a formal proof of (i) and (ii) by induction, it is easier to verify them by

following the steps that the algorithm takes during the search, keeping in mind that

(i) the set of all vertices which are adjacent to the vertices of Sk is Sk- USk+ ,

and (ii) the states are searched in the order that they are visited:

0: Visit 0;

1: Search states in So {q}. During this search, all states in S1 are

visited;
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2: Search states in S1. During this search, (i) all states in S2 are visited,

and (ii) only states in S2 are visited, since all of So U, had been

visited before;

k: Search states in Sk-1. During this search, (i) all states in Sk are visited,

and (ii) only states in Sk are visited, since all of SoU... USk_i had

been visited before;

In principle, in order to know if a state D, obtained from state D E S by

activating some link j E U(D), has already been visited (i.e., generated), we should

have to search explicitly the set of already existing states for state D. The repetition

of this search for every such pair of states D and D' (of the same cardinality) can be

computationally very expensive. The following Lemmas state that, for symmetrical

protocols and under the conditions stated, this search is not necessary.

Lemma 8.2.2 Assume an (arbitrary) ordering of the network links. For all k > 0,

when searching a vertex D E Sk, let the vertices in Sk+1 adjacent to D be enu-

merated (i.e., visited) in the order that results from the successive activation of the

links in U(D) in the order of increasing link numbering. In the cases in which the

activation of a link can lead to two states, one with the link not locked onto, and

the other with the link locked onto, let the former be enumerated before the latter.

Let also 11 (D) be the lowest-numbered, 12 (D) the second lowest-numbered, etc., link

active in state D. The following statement is valid for symmetric protocols and for

a breadth-first search started in state 0. Let D1 and D2 possess the same number

of active links, and let k be the smallest index such that either (i) lk(D 1 ) # lk(D2),
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or (ii) lk(Di) = lk(D2) = j, with j being locked onto in one of the states, and not

locked onto in the other state. In case (i), if lk(D1) < lk(D2) then D, is visited

before D2. In case (ii), if j E D- and j E D+ then D, is visited before D 2.

Proof: The proof is by induction on the common number of links active in D1

and D 2. The conclusion is true for states in S since, by construction, given two

links i and j, with i < j, (i) any of the states ({i}; 0k) or (0; {i}) is visited before

any of the states ({j}; 0) or (0; {jJ), and (ii) state (0; {i}) is visited before state

({i}; 0). Assume the conclusion true for states containing n active links, and let

D, and D2 contain n + 1. By the definition of breadth-first search, each of D, and

D2 is visited from the lowest-numbered state that they are adjacent from. We look

now for those states. Since we are dealing with symmetric protocols, any D E S

can be reached from the state obtained by deactivating any of the links j E D.

Furthermore, for undisciplined protocols, if there exists, i E D- n V(s(j)) then a

transition may exist from state ((D - j)+ U {i}; (D - j) - {i}) into state D. These

states need not however be considered when looking for the lowest-numbered state

that D is adjacent from, since the application of the induction hypothesis shows

that state D - j has a number lower than any of these states. Thus we only need

to consider the states D - j, for j E D. Let D be a generic state in S,,+,, with

i,j E D, and i < j. By the application of case (i) of the induction hypothesis to

D - i and D - j, we see that D - i is visited after D - j. Thus the lowest-numbered

state that D is adjacent from is obtained by deactivating the highest-numbered link

in D. We now apply this result to both D, and D2 , and denote by a(Dt) and a(D 2)

the states they are visited from. If k is such that I(Dt) and lk(D2) are the highest-

numbered links in both D, and D2, then a(Di) = a(D2). The order in which links

are activated when generating the vertices adjacent from a given vertex implies the

validity of (i) and (ii). If lk(DI) and lk(D2) are not the highest-numbered links in

D, and D,, then the application of the induction hypothesis to a(Di) and a(D,)
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implies the validity of (i) and (ii). I

Corollary 8.2.3 Let h(D) be the highest-numbered link active in state D. Under

the assumptions of Lemma 8.2.2 and when searching state D, all unvisited states

adjacent to state D are obtained by activatingall the linksj E U(D), with j > h(D).

Proof: As argued in the proof of the previous Lemma, given a state D, its "ances-

tor" a(D) is obtained by deactivating the highest-numbered link in D. This means

that from any state D, only states obtained by activating some link j > h(D') are

visited when searching D. I

Corollary 8.2.4 Consider state D E S, and let links j, l E U(D), be such that j < 1.

For a disciplined protocol, state D +j (meaning either D +j+ or D +j-) is visited

before state D + I (meaning either D + l+ or D + I-).

Proof: Let k be such that, in the notation of Lemma 8.2.2, j = lk(D +j). Then we

have that li(D +j) = (D + 1) for i = 1 -. ,k-I, and that lk(D +j) = j < lk.(D + 1).

Thus, from Lemma 8.2.2, state D + j is visited before state D + 1. 1

Note that Corollary 8.2.4 does not hold for undisciplined protocols. As an ex-

ample, consider the four node ring of Figure 5.12 under ALOHA. Let D = ({2}; 0),

and consider the activation of links 6 and 8. The activation of link 6 leads to states

({2, 6}; 0) and ({2}; {6}). The activation of link 8 leads to states ({8}; {2}) and

(4;{2,8}). Even though 8 > 6 we have, by Lemma 8.2.2, that state ({8}; {2}) is

visited before state ({ 2}; {6}).

From the preceding Lemmas we derive Algorithm 8.2.5, shown in Figure 8.2, for

the enumeration of the state space for symmetric protocols. During the execution

of this algorithm, the visited states are stored in an array S in the order they

are visited. The variables current and last represent, respectively the indices in

this array of the state being currently searched, and of the last state generated
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Algorithm 8.2.5

begin;
number the links, from 1 to L;
current := 1; last := 1; S[1]
repeat

D:= S[current];
for i:= 1 to L do begin

if (i E U(D)) and (i > h(D)) then begin
last := last + 1;
D' := D + i+;

S[last] := D;
if i E Ld(D) then begin

last := last + 1;
D' := D +/i+;

S[last] := D';
end;

end;
end;
current := current + 1;

until (current > last);
end.

Fig. 8.2 Algorithm for the enumeration of the state space for symmetric protocols

(visited), and h(D) represents the number of the highest-numbered link active in

D. Algorithm 8.2.5 relies on the assumption that each state D E S is adjacent

(i.e., p-reachable) from any other state obtained by deactivating any link j E D.

The algorithm will thus not perform correctly as is for nonsymmetric protocols.

Suppose, however, that for a given nonsymmetric protocol and network topology

it is possible to order the links of the network in such a way that, whenever link j

blocks link i but i does not block j, link j has a number higher than link i. It is

easy to see that for this case the algorithm will perform correctly. One way to verify

the existence of such ordering makes use of the nonsymmetrical interference graph

of the network links, defined as the directed graph with vertices corresponding
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to the links in the network, and where there is an edge from link i to link j if

j blocks i but i does not block j. An ordering of the links as the one desired

is possible if and only if the graph has no cycles, in which case it represents a

partial ordering of the network links between which asymmetric blocking exists.

The existence of cycles can be checked easily by performing a depth-first search on

the nonsymmetrical interference graph IAho83). In the general case, however, such

an ordering is not possible, and an algorithm for the enumeration of the state space

will have the drawback of having to check, for each state D being searched and each

link j E U(D), whether the state(s) D' resulting from the activation of j already

exist. Furthermore, such algorithm will not provide in general a criterion, such as

the one presented in Lemmas 8.2.1 and 8.2.2, to determine which of two given states

is visited first. The construction of the state space for nonsymmetric protocols can

be reduced, however, to the one for symmetric protocols by using Algorithm 8.2.4

applied to the symmetrization of the protocol unider consideration. The transition

rates between states in the state space of the symmetrized protocol are governed

by the blocking properties of the original protocol. This is the approach followed in

our implementation of the analysis. The resulting state space will contain in general

some additional states not contained in the state space of the protocol originally

considered, but these states will be transient, and their existence will not alter the

result of flny relevant computations.

8.2.1.3 Construction of the State Transition Rate Matrix

As noted in Section 8.2.1.1, the enumeration of the nondiagonal entries of the

Q-matrix is equivalent to the enumeration of the arcs of the digraph G corresponding

to the state transition rate diagram. This enumeration can be done systematically

while performing a traversal (using any suitable algorithm) of the vertices of the
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Algorithm 9.2.6

begin
D :=Do; { initial state for traversal }
repeat

for each i E D do begin
D' := D - i;Q [D, Dq pi;

end;
for each i E U(D) do begin

D' := D +i-;

if (i V L (D)) then begin
Q[D, D'] :=

end else begin
Q[D,Dq] :--(1 - Il(j)(D; O))i;

DI :=- D + i+;

Q[D, D] := "Pd(,)(D; i)Ai;
end;

end;
if (all vertices visited) then begin

stopcondition := true;
end else begin

D:= nezt(D);
end;

until (stopcondition);
end.

Fig. 8.3 Algorithm for the enumeration of the entries of the Q-matrix for symmet-
ric protocols

digraph G, and then enumerating the arcs going out of each visited vertex. As-

sume that, given state D, the function nezt(D) gives the next state to be visited

during some traversal of the state space. Algorithm 8.2.6, shown in Figure 8.3,

gives a schematic description of the enumeration of the entries of the Q-matrix for

symmetric protocols. This algorithm, when used with the breadth-first search of

8.2.1.2, produces a Q-matrix with a tridiagonal block structure in which the diag-

onal blocks Dk, k = 1,..., N, are diagonal matrices, with all the pi's in the blocks
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Fig. 8.4 Block structure of Q-matrix produced by breadth-first search

Mk-j,k, k = 2, ... , N, to the left of the main diagonal, and all the Aj's in the blocks

Ak,k+l, k = 1,... , N - 1, to the right of the main diagonal (Figure 8.4). This

structure presents favorable numerical properties ([Cont72]), and does not exist in

the case when the state space is enumerated using a depth-first search.

8.2.1.4 Data Structures and Algorithms

We now describe the PASCAL data structures and algorithms used in a com-

puter implementation of the analysis of &eneral symmetric protocols.

State space and Q-matrix: The state space is stored in an array StateArray,

which is also used for accessing the entries of the Q-matrix, as described below.

The cell StateArray[i] is a record, containing one field in which the i-th state in
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the state space (according to the order in which states are enumerated) is stored,

and two pointer fields, one poirting to the corresponding row of the Q-matrix, and

the other pointing to the corresponding column. Due to the special structure of the

problem, it is possible to devise a number of storage strategies for the Q-matrix that

offer significant advantages over a straightforward approach. A first step consists

of noting that the Q-matrix is sparse. Indeed, the size of the state space grows

typically as e L , where L is the number of network links and a is some positive

constant. However, each row has at most 2L nonzero nondiagonal entries, and so

the fraction of nonzero entries is of the order of Le - 2L, and becomes arbitrarily close

to zero as L increases. Thus a substantial savings on the storage requirements can

be obtained by storing only the nonzero entries of Q. Some additional simplification

results if we note that the nondiagonal entries of the Q-matrix are of the form aci

or pi, i = 1,.., L. The value of a depends on the transition in question and can

either be a = I or, for some state D E S, a = Pt(i)(D, i) or a = 1 - Pd(i)(D, i).

Thus in a Q-matrix cell we can just store the factor a, together with the index

i, if the corresponding rate is Ai, or just the index -i, if the corresponding rate

is pi. The actual rates Ai and pi are stored in an array RateArray, such that

RateArray[i] = Ai, i = 1,...,L, and RafeArray[-i] =- pi, i = 1,..., L. In this way

an updating of the entries of the Q-matrix is not necessary when new reschedulng

rates or average packet lengths are desired, while at the same time the updating

of the entries of the array RateArray is very simple. Some further reduction in

the number of entries stored can be accomplished by noting that, for the symmetric

protocols considered here, a transition from D to D-j implies the reverse transition,

and tat, for disciplined protocols, a transition from D into D+j+ or D+j- implies

the reverse transition. Thus, for disciplined protocols, one single entry can represent

both Q[D, D'] and Q[D', D] and only one-half of the matrix has to be stored. This

strategy can be used for undisciplined protocols by adding an additional flag to each
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entry to indicate the case where, for some D E $ and j E U(D), only the transition

from D into D + j+ or D + j- exists, without the corresponding reverse transition.

Such a situation occurs if and only if some link i E V(s(j)) is active in state D, and

is thus very easily recognizable.

The cells (entries) of the Q-matrix are stored as a doubly linked list, linked by

both columns and rows. This arrangement is required by the fact that the traversal

of a row (or column) in the full Q-matrix corresponds to the traversal of both a row

and column in the half-matrix that we store. The first cell in a given row or column

is accessed by means of the pointers in the cell of the corresponding state in the

array StateArray. Each cell of the Q-matrix is also a record, with the following

fields: (i) the index of the row to which the cell belongs, (ii) the index of the columns

to which the cell belongs, (iii) the index of the link to which the entry refers (iv) the

coefficient, Pd()(D; i) or 1 - Pd(,)(D; i), that affects the corresponding A-entry, (v) a

flag that for undisciplined protocols is true if the cell represents only one transition,

as described above, and false otherwise, (vi) a pointer to the next cell in the same

column, and (vii) a pointer to the next cell in the same row.

Stationary probability vector: The solution of the balance equations (6.1) is stored

in an array ProbArray, in which ProbArray[i] is the steady state probability of

the state stored in StateArray[i].

Average successful length vector: During the computation of the throughput of

link i, the solution of (6.5) is stored in an array TArray in which, if we let i be

the index in StateArray of state D, TArray[ij stores the value of TD, as defined in

Proposition 6.2.3. This array is reused when computing the throughputs of different

links.

Q-diagonal vector: The values of the diagonal entries of the Q-matrix are stored

in an array QdiagArray, in which QdiagArrayli] stores the negative sum of the
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transition rates out of the state stored in StateArrayfi], in the Markov chain {X(f)}.

(In the chain {Xa(t)} there are additional transitions out of state D E A.(i), with

rate c(D; i), due to bit errors.) This array is recomputed each time a new set of

rescheduling rates is introduced, by traversing the rows of the (full) Q-matrix and

summing the rates corresponding to the existing cells.

Unblocked list: For the computation of the sums in Equation (6.3) we need to

know the indices, in StateVector, of the states D E U,(i) and D + i+ E .A4(i).

In order to avoid an expensive search in StateArray each time one such index is

needed, we keep an array Unblocklist of linked lists, one for each link, in which

Unblocklist[i] contains the information necessary for the computation of (6.3) for

link i. Each cell in the list for link i corresponds to a given D E Us(i), and is a record

with the following fields: (i) the index, in StateArray, of state D, (ii) the index, in

StateArray, of D + i+, (iii) the value of Vd(.)(D; i), and (iv) a pointer to the next

cell. Whenever a cell is inserted in the Q-matrix representing the activation of link i

in the locked state, the indices of the origin and destination state are recorded in

a cell which is inserted in the list Unblocklist[i]. This procedure involves no extra

comiiputational effort, as is apparent from Algorithm 8.2.6. These lists are also used

for the implicit generation of the matrices R5 (i) of (6.5) from the Q-matrix, as

discussed later.

Generation of state space, Q-matrix, and Unblocked list: All these three data

structures are simultaneously generated. Algorithm 8.2.7, shown in Figure 8.5, is

used for this purpose. This Algorithm is obtained from a combination of Algo-

rithms 8.2.5 and 8.2.6. In it, we let i(D) designate the index of state D in the

array StateArray, Qcell[i,j] denote the (ij)-th entry of the Q-matrix, and Uccll

denote a generic cell of Unblocklist. All other symbols have the same meanings as

in Algorithms 8.2.5 and 8.2.6. The ordering of the st ates afforded by the generation

164



Algorithm 8.2.7

begin;
number the links, from I to L;
current := 1; last := 1; S[1]
repeat

D:= StateArray[current]; { state being currently searched }
for j := 1 to L do begin

if (j E U(D)) then begin
D' :-- D +j-;

if (j < h(D)) or (V(j) n D + 9 ) then begin
{ D' already exists in state space }

index := i(D'); { find position of D' in StateArray }
end else begin; { add new state to state space }

last := last + 1;
StateArray[last] := D';
index := last;

end;
create celltcurrent, index]; insert into Q-matrix;
if (j E Ld(D)) then begin

last := last + 1; { add transition with j locked onto }
D' := D + j+;

StateArray[last] := D';
if (j < h(D)) then begin { D' already exists in state space }

index:= i(D'); { find position of D' in StateArray }
end else begin; { add new state to state space }

last := last + 1;
StateArray[last] := D';
index:= last;

end;
create Qcell[current, index]; insert into Q-matrix;
add Ucell to Unblocklist;

end;
end;

end;
current := current + 1;

until (current > last).
end.

Fig. 8.5 Algorithm for the enumeration of the state space and construction of Q-
matrix for symmetric protocols
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of the state space via a breadth-first search, and which is expressed in Lemmas

8.2.1 and 8.2.2, presents advantages that are apparent during the execution of Al-

gorithm 8.2.7. In particular, the linear ordering of the states in StateArray allows

the determination of i(D) to be made via a binary search, with a computational

complexity which is logarithimic in the number if states involved. Furthermore,

since all states with k elements occur as a block in StateArray before all states

with k + 1 elements and after all those with k - 1 elements, the search for i(D) may

be confined to the block where D is known to belong to. Another simplification

results for disciplined protocols from Corollary 8.2.4. When filling out the row of

the Q-matrix corresponding to state D E S by activating the links i E U(D) in

order of ascending number, the resulting states D + j also come out in ascending

order, in such a way that the new cell to be inserted in the Q-matrix can just be

appended to the end of the list representing the row. In the case of undisciplined

protocols the resulting states may not appear in increasing order, and the new cell

may have to be inserted in the middle of the list representing the row. However,

from the proof of Corollary 8.2.4 it is easy to see that this situation only occurs

when the link j being activated is such that there exists i E D + n V(s(j)), and is

thus easily recognizable.

Solution of the auxiliary Markov chain {Xia(t)}: When solving the system of linear

equations (6.5) it is advantageous to keep the matrices involved as sparse as possible.

Thus it is not appropriate to solve (6.5) as

T = (R2(i))-ll,

since the matrix R2_(i) will lose sparsity with respect to R1.(i) and the computation of

R.2(i) is expensive. Instead, the solution of (6.5) can be obtained from the successive

solution of two systems of linear equations, as in

T = R'(i)[R (i) 1]. (8.1)
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For iterative methods of solution of R - 1 that only involve performing the products

between a vector and a matrix, the matrix R,(i) does not have to be explicitly

generated and stored. As described in Proposition 6.2.3, the set of rows/columns

of 1.(i) is formed by the rows/columns of the Q-matrix that correspond to the

states in As(i). The entries of P.(i) below the main diagonal are identical to the

corresponding entries of the Q-matrix, whereas the entries above the main diagonal,

representing transitions from D E A,(i) into D + j E .A,(i), j E U(D), are related

to the entries of the Q-matrix by

R4(i)[D, D + j] = [1 - pl(i, j)] Q(D, D + il. (8.2)

Let v = (VD)DEA,(i) be a vector for which we want to compute the product

(i) v. The vector v is stored in an array workvec with the dimension of the

state space S, such that if i is the index of D in StaleArray, the element vD is

stored in workvec[i]. The product R,(i) v is computed by multiplying the Q-matrix

by the vector workvec, but working only with the components where indices corre-

spond to the states in .48(i). These indices are found in a straightforward way by

a traversal of the linked list Unblocklist. When multiplying an entry of R,(i) by

an entry of v, one only has to retrieve the corresponding entry of the Q-matrix and

the factor [1 - pi(i, j)] of Equation (8.1), if it applies. The latter can be stored in a

table, for example. The diagonal entries of Rs(i) are the sum of the corresponding

entry of the Q-matrix and the negative bit error rate c(D, i), and also do not have

to be explicitly stored.

Throughput computation: Algorithm 8.2.8, shown in Figure 8.6, gives the se-

quence of computations for the evaluation of the link throughputs for a given set

of values of the rescheduling rates and average packet lengths, in a situation of

nonperfect capture. It assumes all data structures to have been properly initialized.

Once the steady state probabilities and the average successful channel utilization

167



Algorithm 8.2.8

begin
solve steady state equations; store in ProbArray;
for i:= 1 to L do begin

solve T = l - 2 1; store in TArray;
compute Si via Equation (6.3);

end;
end.

Fig. 8.6 Sequence of computations for evaluation of link throughput

per transmission are computed, the computation of Si is made by traversing the

linked list Unblocklisf[i] and, for each cell in the list, retrieving the corresponding

elements from the arrays ProbArray and TArray, as well as the value of Pd(,)(D, i)

stored in the cell of Unblocklist. Under perfect capture only the solution of the

balance equations is required, since in this case T(D, i) = p7l

8.2.2 Protocols of Class D

The throughput of protocols of class V can be obtained by treating them as

general protocols not in V, and using a solver for the latter. This was the approach

taken in our computer implementation of the capacity analysis of packet radio

networks. However, substantial reductions in the cost of the computation can result

if the special structure of the protocols in V is exploited.

Many of the aspects of the computation of the throughput for protocols of

class D are similar to those encountered for the protocols not in V. We discuss

in this section mainly the aspects peculiar to protocols in V. For these protocols,

the link throughputs are given, in general, by Equations (5.35) or (5.36). The

computation of the link throughput may require the solution of either or both of
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the systems of equations (5.1) and (5.37), for the steady-state probabilities and the

average successful channel utilizations per transmission attempt, respectively. The

solution of (5.1), necessary in situations where a product form solution does not

exist, or the solution of the auxiliary Markov chain (5.37), necessary in situations

where the probability of success of a packet depends on its length, require the

enumeration of the state space and construction of the Q-matrix of the process

{X(i)} of Section 5.1. The solution of (5.37), neccessary for protocols not in class

C,, requires the enumeration of the state space and construr' ion of the Q-matrix of

the processes {Yn(i)}, n = 1, .- , N, of Section 5.2.

8.2.2.1 Enumeration of State Space and Construction of Q-matrix of
{X(t)}

The issues in the enumeration of the state space and construction of the Q-

matrix for the process {X(t)} of Chapter 5 are similar to those encountered for the

state representation of Chapter 6, for protocols not in class V. In particular, there

exists a subclass of protocols, corresponding to the symmetric protocols of Chapter

6, for which the enumeration of the state space is more easily done. This subclass

is formed by the protocols that lead to a product form solution. Algorithms 8.2.4-

8.2.6 and the associated data structures,applicable to symmetric protocols, can be

translated directly into algorithms and data structures applicable to the product

form protocols by changing appropriately the nature of the states, and by disregard-

ing the distinction between the activation of a link in the locked and the unlocked

state. Ab an example, we show in Figure 8.7 an algorithm for the simultaneous

construction of the state space and Q-matrix for product form protocols, directly

obtained from Algorithm 8.2.7. The discussion of Section 8.2...2 regarding the enu-

meration of the state space for nonsymmetric protocols also applies directly to the

case of protocols that do not lead to a product form solution. In particular it is

169



Algorithm 8.2.9

begin
number links, from 1 to L;
current := 1; last := 1; StateArray[l] 0;
repeat

D := State Array[current];
for j 1 to L do begin

if(j E U(D)) then begin
D' := D U {j};
if (j < h(D)) then begin

indez := i(D');
end else begin

last := last + 1;
StateArray[last] := DI
index := last;

end;
create cell[current, indez]; insert into Q-matrix;

end;
end;
current := current + 1;

until (current > last);
end.

Fig. 8.7 Algorithm for the enumeration of state space and construction of Q-matrix
for product form protocols

again true that, if it is possible to find an ordering of the links such that whenever

link i blocks link j and link j does not block link i then j < i, Algorithm 8.2.9 will

perform correctly. However, such ordering does not exist in general. An algorithm

for protocols with nonsymmetric blocking is computationally expensive since, when-

ever considering a state obtained from an existing state via the activation of some

link one does not know in general whether the resulting state already exists in the

state space, and thus a search among the existing states is required. Thus in such

a situation it is preferable to use Algorithm 8.2.9 applied to the symmetrization of

the protocol in question, even at the expense of possibly introducing some transient
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states in the state space.

8.2.2.2 Evaluation of Product Form Solution

Equation (5.6) can be used for the computation of the steady state probabili-

ties whenever a product form solution exists. The evaluation of (5.6) requires the

computation of the normalizing factor p(0)- 1 , given by Equation (5.7). If the enu-

Smeration of the state space is required by some other computations, then p()- 1

can be directly evaluated via (5.7). Otherwise, one can avoid that enumeration by

the use of the following recursive algorithm, which is a direct adaptation to the

state description employed here of an algorithm first given in [Boor8O]. Let V be a

set of network links, and define

SP(V) A , ,
' A (8.2)

DES iED
DCV

with SP(q) = 1. Let also N(i) be the set of all links that block link i. It is easy to

verify that

SP(V) = SP(V - {i}) + L SP(V - N(i)). (8.3)Pi

Let D E S be a state for which we want to compute p(D). If we let V denote the

set of all network links, then

p()-= SP(V)

and

p(D) = J ,
SP(V) ,e p,

(Boor83] presents an algorithm and data structures for the efficient computation

of (8.2) based on (8.3). [Kers84] also introduces a recursive relation that constitutes

a generalization of (8.3).
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8.2.2.3 Steady State Probabilities of {Y,(t)}

Once the steady state probabilities of {X(t)} are computed, the steady state

probabilities {p,(D;j) : D E Sj E DflV(n)} of each {Yn(t)}, n = 1,- , N, can be

computed from Equations (5.13) or (5.15). The latter is obtained from the furimer

by a simple rescaling of the unknowns, and is thus equivalent to it. If a product

form solution exists for {p(D) : D E S} then Equation (5.16) can be used directly

instead of (5.13) or (5.15).

The solution of (5.13), (5.15), or (5.16), for any two different nodes can be done

independently, and in parallel. Data structures similar to those of Section 8.2.1

can be used for the storage of the state space and the coefficient matrices of these

systems. Some differences, however, exist. One such difference is that, unlike the

balance equations encountered thus far, the coefficient matrices are not transition

rate matrices of Markov processes, and the corresponding systems of equations are

not homogeneous. Another difference is that the matrices of the coefficients do not

have the symmetric structure of the matrices considered in 8.2.1, and thus the use

of separate cells for the storage of the elements above and below the main diagonal

is required. In order to obtain an ordering of the states with properties similar to

those of Section 8.2.1.2, tLe underlying state space $ should be the state space of

the "symmetrization" of the protocol in use, where the symmetrization P,m of a

protocol P in P is defined to be the protocol in which given links ij E C, these

links block each other in Psym if they block each other in P, and do not block each

other in Pay,m, otherwise. The generation of the matrices of coefficients of (5.13),

(5.15), or (5.16), for symmetric protocols can be made using algorithms similar to

those of Section 8.2.1, and shall not be discussed here.

As a side remark, it should be noted that if we apply the formal:sm of Chapter 6

to a protocol in V, the size of the resulting state space is much larger than the sum
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of the sizes of the state spaces S, S1, -, , S N of Chapter 5. Indeed, let links !1,.- I

have different destinations, and let D be such that i1, -' , Ik are active in state V

and no link emanating from their destination node is active. In the state space S

of the chain {X(t)} of Chapter 6 there will be 2k states with the same active links

as state D, corresponding to the different combinations in which each link 11,.-. k

can be locked onto or not. In the state space of the processes {Y,,(t)} of Chapter 5,

there will be only 2k such states, namely (D; 4) E Sd(,,), and (D; 4j) E Sd(l,).

8.2.2.4 Evaluation of Throughput Equations

In the cases where the solution of (5.1), (5.13) or (5.37) is required, data struc-

tures and algorithms similar to those of Section 8.2.1 can be used, which we shall

not discuss. In a situation where none of these are required, such as the one of a

protocol with a product form solution under idealistic perfect capture, the compu-

tations can be greatly simplified. Suppose that, for each link i E C, the throughput

Si is given by

Si = Gi E_ p(D),

DEu.(i)

with Gi-A Al , and there exists a collection of links £(i) such that the set U, (i) can

be represented as U4(i) = {D E S : D C C(i)}. The throughput equations then

become

Si = a, G i a
DES jED

DCC(i)

or, in the notation of 8.2.2.2,

Si = G sp(i)) (8.4)
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where V denotes the set of all network links. The numerator and denominator of

the fraction in (8.4) can then be easily computed using the product form recursion

(8.3) or any refinements of it, such as the ones described in [Boor83J.

The sets of states L,(i) and the sets of links £(i) involved in the computation

of (8.4) depend on the protocol considered. We saw in Section 5.3.1.2 that, for

idealistic perfect capture with symmetric hearing, U,(i) is formed by all the states

D E S that do not contain any links in C(i), where C(i) is the set of links j such

that either (i) j blocks link i, or (ii) the source node of j can be heard by i's

destination. For CSMA, C(i) is formed by all links whose source node is within one

hop of i's source or i's destination. For C-BTMA, C(i) is the set of all links whose

source nodes are within two hops of i's source. For these protocols the throughput

equations can be written as

si = Gi SP(V - C(i)) iEC.
SP(V) '

8.3 Solution for Desired Throughputs

Let S = [Si]i , be a given vector of desired link throughputs. We want to

find out whether it is feasible and, if so, what rescheduling rates allow the given

throughputs to be attained. This problem can be formulated as determining the

feasibility and, if feasible, the solution of the system of nonlinear equations

Si = Gi f1 (G), i E C, (8.5)

where G - [Gi]iEC is the vector of normalized rescheduling rates Gi A A., and

the functions fg(') are derived from (5.35) or (6.3). These functions can be com-

puted using algorithms as the ones given in Section 8.2. We consider the quantities
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Algorithm 8.3.1

begin
k:= 0;
G (O) :=S;

$!0) :=G!0 )fi(G(0 ), i E C;
repeat

k k + 1;G(): ,G(k-1) s/l(k-t).

I I

(sk) - G (k) f.(G(k)), i E C;
until (l1S(k) - S11 < e JISjj) or (divcondiiion(G(k ), G(k'- ), G(k- 2), G(k- 3)));

end.

Fig. 8.8 Fixed-point iteration algorithm for solution for desired throughputs

{pz- }iEt to be given a priori, and do not explicitly represent the dependence of the

link throughputs on them.

The system of Equation (8.5) can be rewritten as

O =- i E 4 (8.6)

and solved using fixed-point iteration ((Cont72]), as in the algorithm of Figure 8.8.

In this Algorithm, G(k) represents the rescheduling rates computed in the k-th

iteration, and S(k) represents the link throughputs corresponding to G(k). The it-

eration process is stopped when the norm of the difference between the vectors of

the desired and the obtained link throughputs is less than some prespecified tol-

erance c, or when the divergence of the algorithm is detected as specified by the

function divcondiiion. This function becomes true when (i) for some link i E C the

rescheduling rate & ) exceeds some large number MazG fixed a priori, (ii) a pre-

specified maximum number of iterations is exceeded, or (iii) the ratios Gk+ /Gk)

increase for three consecutive values of k, for all i E L. Condition (iii) was arrived
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at empirically, and is found to work very well in practice. A heuristic motivation

for this condition will be given in the next Section. It should be noted that the

determination of the divergence condition does not require the storage of the three

last sets of rescheduling rates obtained from the iteration process, but only the

storage of two boolean flags that record whether such increases occurred in the two

previous iteration steps.

When (8.6) converges, it converges necessarily to a solution of (8.5). We do not

know of any proof of the converse statement, namely that if (8.5) has a solution,

then (8.6) converges. Nevertheless, this appeared to be the case in all the situations

we encountered.

8.4 Capacity Determination

We assume now a traffic pattern vector A = [a iiE to be given. We want to

find the capacity C corresponding to the traffic pattern A. This problem can be

formulated as that of finding

C a sup {S(G) S - I C? f1 (G)/al} (8.7)
G>o

subject to the restrictions

G1 fl(G) _ G2 f 2(G) GL fL(G) (8.8)

Orl (1 aL

Alternatively, it can be formulated as finding the suprcmum of the values of S such

that the system of nonlinear equations

criS = Gi fi(G), i E C, (8.9)
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Algorithm 8.4.1

begin
low:= 0;
high:= 1.1/maxE{,...,N} EiEE(n) ai;

mid:= (low + high)/2;
repeat

S:= mid. A;
perform Algorithm 8.2.7 with input S;
if (divcondition) then begin

high -= mid;
end else begin

low:= mid;
end;
mid:= (low + high)/2;

until (high - low < c mid);
C:= mid;

end.

Fig. 8:9 Algorithm for determination of capacity using a binary search

is feasible.

Since the computation of the functions fi(') in (8.9) is computationally ex-

pensive, we look for methods that do not require the computation of the partial

derivatives of these functions.

8.4.1 Binary Search

A straightforward method of finding the capacity C comes from the second

formulation given above, together with a trial-and-error application of Algorithm

8.3.1, say using a binary search. Algorithm 8.4.1, shown in Figure 8.9, computes the

capacity using this strategy. This method has the major drawback that, when the

value of mid is close to the capacity C, a large number of iterations is required for

the detection of the convergence or divergence of Algorithm 8.3.1. Some heuristic
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insight can be obtained regarding this behavior by looking at a one-dimensional

situation where in (8.8) one of the rescheduling rates Gi is taken as independent

variable and all the other ones expressed as funation of it, and introduced in the

corresponding equation of (8.9), obtaining

ais = Gi fi(Gi),

or

Gi 1 (8.10)
oriS fA(GO)

The solution of (8.10) corresponds to the intersection of the curves Gi/lriS and

1/fi(Gi), and can be arrived at by the iterative process shown in Figure 8.10.

The specific situation shown in this figure is obtained from the four node chain

of Figure 5.1 operating under CSMA with idealistic perfect captire and uniform

traffic pattern, in which G3 was taken as the independent variable. The capacity is

given by the value of S for which the line G/aS is tangent to the curve 1/fi(Gi).

It is apparent from Figure 8.10 that, for S larger than the capacity, the ratios

G(k+I)/G(k) start by decreasing, and then increase after some point. This behavior

is verified in practice, and is the motivation for the divergence criterion used in

Algorithm 8.3.1. From the same figure it is also apparent that, as S gets close

to capacity, either from above or from below, the number of iterations required to

recognize the convergence or divergence of the fixed-point iteration increases, and

the rate of convergence decreases as we approach the solution. In the situation

depicted, point P2 is also a solution, and an iteration with starting point GO° ) >

G2 is seen to diverge. This behavior was also verified to occur in practice in the

multidimensional case described by Equation (8.6).
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*1If1(G1I)

p 2

Fig. 8.10 Direct method of solution for desired throughpts
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8.4.2 Parametric Method

An alternate approach comes from the first formulation given. Let us look at the

set of constraints (8.8) as defining a line in the (GI,-.. , GL)-space. To each point

of this line there corresponds a value of S, given by any of the equatiors (8.9). The

capacity C can be determined by constructing a family of hyperplanes indexed by

some parameter g, finding the value S(g) corresponding to the intersection of the line

and the hyperplane, and maximizing by search over g. Formally, let h(GI, .*. , GL)

be a linear functional defined by

L
h(G1,..,GL) " liGi,

i=I

with fli > 0, i = 1,-.. , L. Let us consider points in the locus of h(Gi, ... , GL) -

where g is some (fixed) positive real number. By rewriting Equation (8.4) as

Gi = ai( i E C (8.11)

we obtain

h(GI - - IGL)= S Ct aL(8.12)

or, given that h(G) = g,

/ =g(8.13)

Sfi(G)' f'/

Introducing (8.13) in (8.11) we obtain

Gi = g fi(G) , i E C, (8.14)

f G)' 'fL-1G)
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Algorithm 8.3.3

begin
k := 0;
G(o) :-S(O);

SG) G)/f(G())Ias, i E C;
#(0) :=g/h(G(°)IS( ° ) ,  G-(°)IS(°)).

repeat
k :=k + 1;
G~k):= i EC;

.qk) := Glk)fi(G())/ai, i E C;
1 ...(k) ;.

until (max {S~k)} min{Sfk)} <, minljf{(k)});
iEf- I EC Ser_

end.

Fig. 8.11 Algorithm for parametric method of solution of throughput equations

which does not contain S, and can be solved using the fixed-point iteration algorithm

shown in Figure 8.11. Note that the rescheduling rates G() produced in the k-th

iteration are such that h(G(k)) = k. After (8.14) is solved, the throughput S

can be found from (8.13). The advantage of this formulation resides in that the

functional h(-) can be chosen so that (8.14) is feasible for ev'y g > 0. Whereas

we do not have a formal proof of it, it has been the experience with all of the

cases encountered that there exists at least one link i such that the locus defined

by Equation (8.3) possesses points with the coordinate Gi arbitrarily large. Thus,

by choosing h(GI,... , G.) = Gi, the system (8.9) will be feasible for any g > 0.

It has also been our experience that fixed-point iteration applied to (8.14) will

converge in these circumstances. In the absence of information on which link i

satisfies the above condition, one can choose '"7, GL) I Gi, or any

other functional in which the coefficients /3i nonzero. Some choices of h(.)
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can speed up significantly the iteration process, but obtaining a good choice is very

much a matter of intuition and of trial-and-error. In the case where Algorithm 8.3.3

is successively used for values of g that are close, the nu'jiber of iterations required

for the algorithm to converge can be substantially reduced by taking the initial

rescheduling rates G(O) of the iterative process for a new value of g to be the final

value of the rescheduling rates at the completion of the algorithm for the previous

value of g.

Fixed-point iteration applied to (8.14) has been seen to converge much faster

than when applied to (8.6). We can again gain some insight into this behavior

by considering a one-dimensional situation, corresponding again to the four node

chain of Figure 5.1 under CSMA with idealistic perfect capture and uniform traffic

pattern. Figure 8.12 shows the graph of Equation (8.14) when written for link 1,

when we choose h(G) = G3 , (i.e., when G 3 is taken to be the independent parameter

g) and all other rescheduling rates are expressed as function of G3. It is seen from

the figure that the iteration converges for any value of g, although the number of

iterations required for a given precision in the solution increases with g9. However,

for the values of g corresponding to the maximum of S, the number of iterations

required is still much smaller than for the fixed point iteration used in the trial-

and-error method of Algorithm 8.4.1. 'Itie situation shown in this figure is typical

of the systems encountered.

The capacity C can be found by maximizing S(g) over g. The function 5(g) is

found in practice to be either monotonic increasing or unimodal, which facilitates

the search for the maximum. For this purpose any standard method of maximizing

functions of one variable can be used. In our implementation of the capacity com-

putation, a quadratic curve fitting algorithm was employed ([Luen73]), with good

results.
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g'>g

G1/g

G1/g1

h(al /fl(G), ... ,aL /fL(G))

Fig. 8.12 Parametric method of solution for desired throughputs
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8.5 Summary and Conclusions

We presented in this Chapter algorithms and data structures for the numeri-

cal evaluation of network capacity using the formalism developed in tb'e previous

Chapters. In Section 8.2 we considered the computation of the link throughputs

given the channel access protocol, the capture mode, and the operating operating

parameters (rescheduling rates and average message lengths) of the network. Most

of this Section considered the more general protocols of Chapter 6, which do not

lead '16 decoupling between the activity of the transmitters and the activity of the

receivers. These protocols require the numerical setting up and solution of the bal-

ance equations of the processes involved. The enumeration of the state space of

these processes was reduced to the traversal of a directed graph, and a breadth-first

search (bfs) was considered for this purpose. We then studied somne properties of the

bfs enumeration, of the state space for symmetric protocols, in particular those prop-

erties concerning the order in which states are enumerated. From these properties

we derived efficient algorithms for the enumeration of state space. Such ordering

properties do not exist for nonsymmetric protocols, and it was argued that the

enumeration of the state space for a nonsymmetric protocol is more easily accom-

plished through the enumeration of the state space of the symmetrized version of the

protocol (albeit at the expense of introducing additional transient states). Finally,

we gave algorithms and data structures appropriate for a computer-implemented

enumeration of the state space, setting up of the balance equations, solution of the

systems of linear systems involved, and computation of throughput. We aiso gave

similar results for the numerical computations involving protocols of class V. In

Section 8.3 we considered the problem of, given a set of link throughput require-

ments, solving for the network operating parameters that attain those requirements,

for whose solution we presented a fixed-point iteration algorithm. In Section 8.4

we studied the problem c' finding the capacity corresponding to an a priori given
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traffic pattern. Two strategies were presented: (i) a trial-and-error binary search

method, at each step of which the feasibility of a tentative value of the capacity is

tested, and (ii) a parametric method that, given an arbitrary linear functional h

of the rescheduling rates, finds the network throughput as a function of the value

assigned to h, and then obtains the capacity by maximization over that value. In

practice, the latter method was found to possess a superior performance.
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Chapter 9

NUMERICAL APPLICATIONS

In this Chapter we apply the methodology developed in the previous Chapters

to the study of the capacity performance of different channel access protocols, and

of the influence on this performance of system parameters such as the type of sig-

naling, the bit duration, and, in spread spectrum systems, the codeword length. For

this purpose we shall consider a spread spectrum system with parameters typical of

existing packet radio systems, and a narrow band system with the same parameters

as the spread spectrum system except for the coding. We consider a number of

parametric topologies (rings, chains, and stars) and randomly generated topologies.

A number of Busy Tone protocols, the Carrier Sense Multiple Access protocol, and

two ALOHA protocols are considered, in both narrowband and spread spectrum

environments. Section 9.1 specifies the spread spectrum and the narrowband sys-

tems considered. It also describes the noise and the capture model, the topologies,

traffic patterns, and access protocols considered. Section 9.2 presents the numer-

ical results. Even though only small networks can be accommodated due to the

fast growing computational complexity of the analysis, the results obtained allow

some insight to be gained. In particular, they establish a ranking of the protocols
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in terms of their capacity performance, and illustrate the tradeoff achieved by the

different protocols and signaling methods in controlling collisions at the receivers

versus allowing the transmitters wide access to the channel.

9.1 System Description

9.1.1 Spread Spectrum System

We consider a system with the parameters given in [Fral75], [Kahn78], [Behr82].

The chip duration in this system is T, = 78.125 nsec. Two different codeword

lengths are used, N, = 32 chips/bit and N, = 128 chips/bit. To these code-

word lengths there correspond two different bit durations, Tb = 2.5 psec and Tb =

10.0 psec, with data rates of 400 kbps and 100 kbps, respectively.

All transmitters are assumed to have the same transmitted power. The trans-

mitted power, thermal noise density and unit of distance are taken to be such that,

for the shorter bit duration Tb = 2.5 psec, the resulting signal-to-noise ratio at unit

distance in the absence of multiuser interference (S/N)o," = A 2 Tb/ 1o is 11 db (see

Equation (1.3)). To this signal-to-noise ratio there corresponds, from Equation (1.4),

a probability of bit error in the absence of multiuser interference Pe = 1.94 x 10- 4

at unit distance. The signal-to-noise ratio for the longer bit duration Tb = 10.0 psec

is four times the value for Tb = 2.5 psec, or roughly 17 dB, to which corresponds a

probability of bit error P = 6.42 x 10- 1' at unit distance in the absence of mul-

tiuser interference. It is assumed that, due to the choice of preamble codes with

good correlation properties, an unlocked receiver locks with probability one onto

the preambles of new packets destined to it. Packets are taken to contain an average

number of 1000 bits.
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9.1.2 Narrowband System

We consider the narrowband system obtained from the spread spectrum system

of Section 9.1.1 by removing the coding (for example, by taking all chips to have

amplitude +1). Thus again we consider two different bit lengths, Tb = 2.5 psec and

Tb = 10.0 (sec, to which there correspond signal-to-noise ratios at unit distance

(S/N)o,u = 11 dB and (S/N)o,. = 17 dB, with probabilities of bit error P,

1.94 x 10- 4 and Pe = 6.42 x 10- 13, respectively.

In the cases examined we shall consider a situation of zero capture, in which

any packet overlay at a receiver causes the destruction of both packets at that

receiver. This behavior constitutes a good approximation whenever the levels of

the interfering signals at a receiver are not much smaller than the level of the

desired signal, as discussed in Section 1.5.

9.1.3 Noise and Capture Model

We assume the noise model of Section 1.4, and the capture model of Section

5.3.2.2 (which includes, as a particular case, the zero capture of narrowband sys-

tems). In order to apply Equation (1.4) to determine the probability of bit error one

needs to know the power of the received signal as a function of the distance to the

transmitter, that is, the propagation law. A satisfactory model consists of taking

the received power to vary as R- a , where R is the distance to the transmitter and

a is a constant between 3 and 4 ([Fra175]). In the following computations we take

a-3.

For narrowband systems, the probability of bit error if no packet overlap occurs

at the receiver is Pe = Q ( (SIN)o) and with (S/N)o = Ro3-(S/N)o,., where R0 is

the distance from the desired transmitter to the receiver. If a packet overlap occurs,
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the probability of bit error is taken to be 1/2. In the latter case, we take the prob-

ability of success of such packet to be zero. For spread spectrum systems, we take

the probability of bit error due to interference other than "vulnerable window" col-

lisions to be given by Equation (1.4). In this equation, and given the assumptions of

equal transmitted power and propagation as R - 3, we can write Pk/Po = (Rk/Ro) - 3 ,

where Rk is the distance from the k-th interfering transmitter to the transmitter.

If we let (S/N), Z A2T /-qo be the signal-to-noise ratio corresponding to a received

pulse of duration equal to the chip duration, then (S/N)o = Nc(S/N),, and the

probability of bit error given by Equation (1.4) becomes

which shows the improvement in bit error rate obtained when the bit duration is

changed by varying the length of the codewords.

9.1.4 Topologies

We consider the following topologies: chain topologies, ring topologies, star

topologies, and a small number of nonparametric topologies. The nonparamet-

tic topologies considered are three randomly-generated topologies and a centered-

square topology, shown in Figure 9.1. For the purposes of received power, all links

in the star, chain, and ring topologies, and the links forming the sides of the square,

in the centered square topology, are taken to have unit length. The random net-

works were generated by randomly placing six nodes in a square whose side has a

length of two units. The coordinate of the nodes were obtained as realizations of

independent random variables uniformly distributed within the length of the side
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(a) (b)

(c) (d)

Fig. 9.1 Nonparametric topologies considered in examples
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of the square. The connectivity was determined from the smallest hearing radius

that makes the network connected.

The rapid growth of the storage and computation requirements of the analysis

as a function of the number of network elements limits the direct application of

the analysis to small networks. However, the networks that we consider represent

well the different aspects of multihop networks: on one hand the multihop nature,

represented by the chain and ring network, and on the other hand the varying degree

of connectivity, given by the star networks of different sizes, and by the centered

square network. The random networks combine both aspects.

9.1.5 Traffic Patterns

Two distinct types of traffic pattern were considered: (i) uniform nearest-

neighbor traffic (NNB), in which all links carry the same traffic, and (ii) uniform

end-to-end traffic (ETE) with minimum-hop routing. The link traffic requirements

in the latter case are determined by computing the shortest paths between the

source and the destination nodes, and then assigning flows to the links in those

paths. Whenever at a node in the shortest path there are more than one shortest

paths to the destination, the outgoing traffic is split evenly among those paths. In

the case of uniform link traffic we set ai = 1 for all links i E C, where ai is the

traffic pattern coefficient figuring in Equation (8.8). In this case the capacity C,

defined by Equation (8.7), represents the maximum link throughput. In the case

of uniform end-to-end traffic the coefficients ai are computed by assigning to ev-

ery pair of nodes an end-to-end traffic of 1/N(N - 1), where N is the number of

nodes. The coefficient ai for link i is set equal to the link traffic resulting from

this end-to-end assignment. In this way, the capacity C represents the maximum

value of the sum of the end-to-end traffics that is supported by the network under

minimum-hop routing and uniform end-to-end requirements.
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For the star and ring topologies both traffic patterns lead to uniform link traffic,

although with different capacities. Let C, and CC be the capacities under the NNB

and ETE traffic patterns, respectively. In terms of the NNB capacity, the total

internal traffic equals LC., whereas in terms of the ETE capacity it equals WC,

where W is the average number of hops traveled by a message. Thus

LC.
C e --L C

W

The following results are easily obtained:

(i) Ring with 2n + 1 nodes:

C' 4(2n + 1) C

(ii) Ring with 2n + 2 nodes:

Ce 4(2n + 1) C

(iii) Star with n nodes (including node at center of star):

Ce = n Cn.

In the examples that follow, we shall consider the ETE capacity for the star

network, and the NNB capacity for the ring network. For some of the situations

involving the remaining topologies both traffic patterns will be considered.

9.1.6 Protocols

For the narrowband systems and the ,spread spectrum with bit-homogeneous

codes, the following protocols will be considered: C-BTMA, ID-BTMA, LD-BTMA,
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CSMA, D-ALOHA, and ALOHA. ID-BTMA is not directly feasible in some of these

system configuration and we include it here for comparison purposes only. For

spread spectrum systems with bit-changing codes, in which activity sensing is not

feasible, we shall consider only D-ALOHA and ALOHA.

9.2 Results

The results obtained are presented in Figures 9.2 through 9.42. A label with

four fields was appended to each figure in order to simplify the identification of the

situation the figure refers to. The meaning of these fields are as follows:

(i) Topology: ring, star, chain, or nonparametric topology;

(ii) Traffic pattern: uniform end-to-end (ETE), or uniform nearest-neighbor (NNB);

(iii) Signaling/capture: narrowband with zero capture (NBZC), narrowband with

idealistic perfect capture (NBPC), spread spectrum with bit-changing codes

(SSBBCC), or spread spectrum with bit-homogeneous codes (SSNBBCC);

(iv) Bit duration/code assignment: all the bit-homogeneous systems considered use

the longer bit duration; in the case of these systems, this field indicates whether

a transmitter-directed (TXDIR), receiver-directed (RCDIR), or uniform (UNIF)

code assignment is used. In the case of narrowband systems, or spread spectrum

systems with bit-changing codes, this field indicates whether the longer bit

duration (LG) or short bit duration (SH) is used.

The results for ring networks are contained in Figures 9.2 through 9.12. The

capacity of the narrowband systems are shown in Figures 9.2 (for the longer bit

duration Tb = 10psec) and 9.3 (for the shorter bit duration Tb = 2.50sec). The

system with longer bit duration possesses higher capacity, due to the lower bit error
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rate, which can be considered negligible for all purposes. The relative performance

of the two systems can be better seen in Figure 9.10. In order to see the influence of

the collisions that take place after a packet transmission starts we show in Figure 9.4

the hypothetical situation of idealistic perfect capture. Here a node cannot lock onto

a new packet as long as some of its neighbors are active, but is guaranteed successful

reception after it is locked onto, irrespective of the activity of any other nodes (as

long as the destination node does not switch to transmission during the packet's

reception, in the protocols that so allow). As expected, the capacity of the Busy

Tone protocols remains unchanged with respect to the situation of zero capture and

low bit error rate, since the packet losses that are averted by the idealistic capture

are already prevented by the Busy Tone protocols in the case of zero capture. The

improvement in performance due to the perfect capture for ALOHA is small, the

cause being that a large fraction of the packet loss is due to the destination node

of a packet switching to transmit mode during the reception of the packet. CSMA

and D-ALOHA show a significant improvement over the situation of zero capture.

Figures 9.2 through 9.4 reveal that for the narrowband system the ordering of the

protocols in terms of their performance is (i) C-BTMA, (ii) ID-BTMA, (iii) LD-

BTMA, (iv) CSMA, (v) ALOHA, (vii) ALOHA, with CSMA and D-ALOHA having

similar performances. We shall see this ordering to be maintained for narrowband

systems under other topologies. The fact that C-BTMA performs consistently as

well or better than ID-BTMA and LD-BTMA shows that in the narrowband systems

the collision-free operation of C-BTMA outweighs the smaller blocking of ID-BTMA

and LD-BTMA, which allow collisions, as discussed in Chapter 3.

Figures 9.5 and 9.6 show the performance of D-ALOHA and ALOHA in a spread

spectrum system with bit-changing codes, for both the longer (Figure 9.5) and

shorter (Figure 9.6) bit durations. The decrease in performance of the system

with the shorter bit duration over the one with the longer duration is due now

194



to two effects: (i) higher bit error rate, due to the lower signal-to-thermal-noise

ratio, and (ii) decreased protection against multiuser interference, due to the smaller

codeword length. The spread spectrum system with longer bit durations presents

an improvement over the narrowband idealistic perfect capture system that results

from the capability that an unlocked node has in the former system of locking onto

a new packet destined to it in the presence of neighboring activity, rather than

having to wait for an idle channel before being able to lock onto a new packet,

as in the latter. Figures 9.7 through 9.9 present results for the spread spectrum

systems with bit-homogeneous codes in the situation of lower bit error rates (P =

6.42 x 10-13) and the uniform, receiver-directed, and transmitter-directed code

assignments. The collisions resulting from the timing of interfering signals with the

same code waveforms falling within the "vulnerable window" of the desired signal

cause a degradation on the performance of these systems relative to the systems

with bit-changing codes. In order to bring out the effect of thtse collisions, which

is inversely proportional to the length of the codewords, we consider a system with

the shorter bit duration (N, = 32), but with a fourfold increase in the transmitted

power in order to achieve the same probability of bit error. As expected, C-BTMA

performs identically in the three cases, and identically to the way it performs in the

narrowband system with the same probability of bit error, since it is collisions-free.

Contrarily to the situation on the narrowband systems, ID-BTMA and LD-BTMA

perform occasionally better than C-BTMA. This improvement in the performance

of these protocols is due to (i) the fact that now an unlocked receiver can lock

onto a new packet in the presence of neighboring activity, without having to wait

for an idle channel, and thus a packet destined to an unlocked node is locked onto

with probability one (and not collided with also with probability one), and (ii) the

smaller number of nodes blocked by the busy tone under ID-BTMA and LD-BTMA

allows higher communication concurrency, without the introduction of additional
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packet loss. CSMA offers now a marked improvement over D-ALOHA, contrarily

to the situation in the narrowband systems. The better performance of CSMA

can be attributed to its avoiding the situation where a given unlocked node starts

transmitting to a destination node which is active, thus wasting a transmission.

As expected, the ordering of the bit homogeneous systems in descending order

of performance is (i) transmitter-assigned codes, (ii) receiver-directed codes, and

(iii) uniform codes, as shown in Figure 9.11 for CSMA, D-ALOHA, and ALOHA.

In Figure 9.12 we show the comparative performance of the system with uniform

codes and the narrowband system with the same probability of bit error.

Figures 9.13 through 9.17 show results for chain networks with uniform nearest-

neighbor traffic. These results show that the performance of the different protocols

has the same behavior with respect to the different system parameters as in the ring

topologies. Figure 9.18 through 9.22 show results for the uniform end-to-end traffic

pattern. Under this traffic pattern the links closer to the center of the chain carry

more traffic than those farther away. From these figures one sees that the relative

performance of the different channel access protocols is insensitive with respect to

the type of traffic pattern.

Figures 9.23 through 9.29 show the performance of star networks with uni-

form end-to-end traffic. In these networks all busy tone protocols perform iden-

tically. The performance of these protocols is not shown for the spread spectrum

bit-homogeneous systems, since it is identical to that of the corresponding narrow-

band system with the same probability of bit error. The ordering of the protocols

on the basis of their performance is the same as for the ring networks.

Figures 9.30 through 9.41 show the performance of the different protocols in the

honparametric topologies. Each graph shows, from left to right, the performance of

the topologies of Figure 9.1 in the order of their appearance in that Figure from top
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to bottom. Figure 9.30 through 9.36 give results for the uniform nearest- neighbor

traffic pattern. The relative performance of the access protocols Ls seen to be similar

to the performance exhibited in the other topologies examined. Figures 9.37 through

9.41 show results for the case of uniform end-to-end traffic pattern. It is again seen

that the relative performance of the channel access protocols is relatively unaffected

by the type of traffic pattern. The influence of systems parameters such as signal-

to-noise ration and type of signaling is also similar to that observed in the other

topologies examined.

9.3 Summary and Conclusions

This Cha-pter presented capacity results for a number of topologies, channel

access protocols, and capture modes. Section 9.1 described the spread spectrum

and the narrowband systems considered. It also described the noise and the capture

model, the topologies, traffic patterns, and access protocols considered. Section 9.2

presented the numerical results. These results establish a ranking of the protocols

in terms of their capacity performance, and illustrate the tradeoff achieved by the

different protocols and signaling methods in controlling collisions at the receivers

versus allowing the transmitters wide access to the channel.
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Fig. 9.2 Link capacity for ring topologies with uniform nearest- neighbor traffic,
for a narrowband system with zero capture and long bit duration
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Fig. 9.3 Link capacity for ring topologies with uniform nearest- neighbor traffc,
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Fig. 9.5 Link capacity for ring topologies with uniform nearest-neighbor traffic, for
a spread spectrum system with bit-changing codes and long bit duration
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Fig. 9.6 Link capacity for ring topologies with uniform nearest-neighbor traffic, for
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codes, short bit duration, and a fourfold increase in transmitted power

(see text for details)

203



>,300

C- C-BTMA
-- " ID-BTMA

..250 o- -o LD-BTMA
CSMA

.-- * Disc-ALOHA
--.- ALOHA

.200

/

.100

.050. ....... ...... .........

.000,
2 3 4 5 6 7 8

Number of nodes
RINGS.NNB.SSNBBCC.RCDIR

Fig. 9.8 Link capacity for ring topologies with uniform nearest-neighbor traffic, for
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Fig. 9.13 Link capacity for chain topologies with uniform nearest-neighbor traffic,
for a narrowband system with zero capture and long bit duration
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Fig. 9.15 Link capacity for chain topologies with uniform nearest-neighbor traffic,
for a narrowband system with idealistic perfect capture
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Fig. 9.17 Link capacity for chain topologies with uniform nearest-neighbor traffic,
for a spread spectrum system with bit-changing codes and short bit
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Fig. 9.18 End-to-end capacity for chain topologies with uniform end-to-end traffic,

for a narrowband system with zero capture and long bit duration
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for a narrowband system with zero capture and short bit duration

215



1.200

1.00o
1.000 - C-BTMA

- - ID-BTMA
-- -o LD.BTMA

CSMA
.-- Disc-ALOHA
-.-- ALOHA

.400 -A -A

. 200 ,m . . . 0. .. .o.- .... - . .
-OCC

" _ ___B,,- - -

2 3 4 5 6 7 8
Number of nodes

CHA INS.ETE.NBPC

Fig. 9.20 End-to-end capacity for chain topologies with uniform end-to-end traffic,
for a narrowband system with idealistic perfect capture
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Fig. 9.21 End-to-end capacity for chain topologies with uniform end-to-end traf-

fic, for a spread spectrum system with bit-changing codes and long bit

duration
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Fig. 9.22 End-to-end capacity for chain topologies with uniform end-to-end traffic,
for a spread spectrum system with bit-changing codes and short bit
duration
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Fig. 9.23 End-to-end capacity for star topologies with uniform end-to-end traffic,

for a narrowband system with zero capture and long bit duration
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Fig. 9.24 End-to-end capacity for star topologies with uniform end-to-end traffic,

for a narrowband system with zero capture and short bit duration
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Fig. 9.27 End-to-end capacity for star topologies with uniform end-to-end traffic,
for a spread spectrum system with bit-changing codes and short bit
duration
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Fig. 9.28 End-to-end capacity for star topologies with uniform end-to-end traffic,
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Fig. 9.31 Link capacity for nonparametric topologies with uniform nearest-neighbor
traffic, for a narrowband system with zero capture and short bit duration
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Fig. 9.32 Link capacity for nonparametric topologies with uniform nearest-neighbor

traffic, for a narrowband system with idealistic perfect capture
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Fig. 9.33 Link capacity for nonparametric topologies with uniform nearest-neighbor

traffic, for a spread spectrum system with bit-changing codes and long

bit duration
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Fig. 9.34 Link capacity for nonparametric topologies with uniform nearest-neighbor
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Fig. 9.35 Link capacity for nonparametric topologies with uniform nearest-neighbor
traffic, for a spread spectrum system with bit-homogeneous transmitter-
directed codes, short bit duration, and a fourfold increase in transmitted
power (see text for details)
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Fig. 9.36 Link capacity for nonparametric topologies with uniform nearest-neighbor
traffic, for a spread spectrum system with bit-homogeneous receiver-
directed codes, short bit duration, and a fourfold increase in transmitted
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Fig. 9.39 End-to-end capacity for nonparametric topologies with uniform end-to-
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Fig. 9.40 End-to-end capacity for nonparametric topologies with uniform end-to-
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Fig. 9.42 End-to-end capacity for nonparametric topologies with uniform end-to-
end traffic, for a spread spectrum system with bit-changing codes and
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Chapter 10

FINAL REMARKS

10.1 Conclusions

We presented in this work a model for the capacity analysis of multihop packet

radio networks. This model is applicable to a large class of channel access protocols

and modes of capture. The class of protocols that can be accommodated includes

CSMA, a number of Busy Tone protocols, Disciplined-ALOHA, and ALOHA. The

model includes as parameters the probability of bit error, the probability of synchro-

nizing onto new packets, and the probability of collision caused by packet overlaps

at a receiver. By the appropriate setting of these parameters it is possible to repre-

sent different capture modes, such as zero capture, and the type of capture typical

of spread spectrum systems.

The assumptions made in the formulation of the model lead to Markovian

stochastic processes. From the stationary measures of these processes and some

appropriately defined passage times we derived throughput equations. We also pre-
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sented algorithms and data structures for the evaluation of these expressions, and

for the determination of the capacity associated with a given traffic pattern.

Different protocols have different requirements for the state information neces-

sary for the description of their actions. We categorized the protocols in classes

according to the complexity of the state description required, and for each such

class formulated the models with the minimum necessary complexity. Some proto-

cols lead to a product form solution for the stationary probability distribution of the

associated stochastic medel. The existence of a product form solution was shown

to be equivalent to symmetry in the link blocking. This result was also shown to

hold in the case where the packet lengths have an arbitrary distribution (with some

mild restrictions). We also investigated the conditions under which a product form

solution exists when the scheduling delay distribution has a general distribution.

Even though the existence of a product torm solution represents a simplification

in the application of the analysis, we showed that nevertheless its computation is

NP-hard.

The analytical model was applied to a number of topologies and system configu-

rations in order to do a comparative evaluation of the performance of different chan-

nel access protocols. The systems considered were a narrowband system, a spread

spectrum system with bit-changing codes, and spread spectrum systems with bit-

homogeneous codes and uniform, receiver-directed, and transmitter-assigned code

sequences. The results of the analysis showed that, over the situations examined,

CSMA performed consistently better than Disciplined-ALOHA, which in turn per-

formed consistently better than ALOHA. In the narrowband systems C-BTMA was

seen to perform better than ID-BTMA, and the latter better than LD-BTMA\. In

these systems the performances of CSMA and Disciplined-ALOHA were compara-

ble. The spread spectrum captured offered, over the zero capture of the narrowband
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systems, a marked improvement in the performance of D-ALOHA and a not very

significant improvement in the performance of ALOHA. For the spread spectrum

systems with bit-homogeneous codes, where carrier sensing is feasible, CSMA per-

formance showed a marked improvement over D-ALOHA in the situations where

the number of hidden terminals is small. The relative performance of the Busy Tone

protocols did not show the same fixed ordering as in the narrowband system, with

ID-BTMA or LD-BTMA performing better than C-BTMA in a number of situa-

tions. In some cases CSMA also showed a better performance than C-BTMA. We

examined systems with two different codeword lengths, and observed the reduced

performance of the systems with the shorter codewords, due to the effects of (i) re-

duced signal-to-thermal-noise ration, and (ii) reduced protection against multiuser

interference. Two distinct traffic patterns were considered for the cases analyzed.

The relative protocol performance showed to be insensitive with respect to the type

of traffic pattern.

10.2 Open Problems

Many more questions than answers exist concerning the performance of mul-

tihop packet radio networks. In connection with the model presented, one such

question resides in finding product form approximations for the computation of

throughput or, even better, approximations possessing polynomial time complexity.

One such approximation was given by Chen and Boorstyn in [Chen85] for Disci-

plined ALOHA, but approximations for other protocols do not exist. Outside of

the immediate scope of this model many other questions exist, some of which of a

fundamental nature. One such question concerns the conjecture made in Section

1.3 that the boundary of the feasible region of t,- heavy-traffic throughputs, dealt
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with in this work, represents the capacity of the system with infinite queues, in the

sense that if So is a point on that boundary then any set of link traffic requirements

aSO is attainable with finite average queue sizes if 0 < a < 1, and is not attainable

if a> 1.

Another open problem c oncerns the queueing delay behavior of multihop packet

radio systems. Except for very simple cases, no analytical results exist for systems

of interfering queues, and the existing analytical tools do not allow one to go much

further in this respect. An alternative to this situation might be the development of

approximations. These approximations may require some additional insight into the

problem, obtained from simulation studies. A possible approach for such approxi-

rnations could be to assume some functional relationship between the average queue

size at a node and the arrival rate at that queue, parameterized by the heavy-traffic

capacity for the given system parameters.

Another problem for which results do not exist for the multihop case is the

effect of nonzero propagation delay on the system performance. As discussed in

Chapter 1, the exact analysis presents great difficulties, and the only alternative

appears to be the development of approximations. The existence of a nonzero

propagation delay makes it possible for a packet radio system to enter states that

would not be allowed under zero propagation delay operation (for example, the state

where two neighboring nodes are simultaneously transmitting, under CSMA). These

transitions occur at the beginning of the packet transmission, during a "vulnerable

period" with a duration equal to the propagation delay. A possible approximation

would be to consider that these transitions can occur throughout the duration of

the packet, but at a smaller rate. This rate would be adjusted so as to yield the

same probability of transition to the "forbidden" state during a packet duration

as the situatinn where such transitions only occur during the initial "vulnerable
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period." In this way a Markovian model similar to the one described in this work

can be constructed, although with an even larger state space, and thus more severe

limitations from the point of view of the computational complexity.

Aside from the above mentioned modeling problems, many questions exist con-

cerning the system behavior of packet radio networks. One such question is rout-

ing. Contrarily to the situation in point-to-point networks, in packet radio networks

there is interaction between the routing and the capacity of the network links. Given

a set of end-to-end traffic requirements, one would want to determine whether there

exists some routing function for which the resulting link traffics are feasible and, if

so, which such function minimizes the average packet delay. Transmit power con-

trol is also an important issue in packet radio. Any choice of the transmit power

must perform a tradeoff between the number of hops needed for a packet to reach

the final destination, and the interference that such transmissions cause at other

receivers. A number of papers, in particular [Klei78], (Silv80], (deSo851, [Sous85J,

and [Hou86], have addressed this problem. Another important issue is the effect of

forward error correction on the performance of packet radio networks. Storey and

Tobagi present some results on this topic in [Stor85J.

Efficient network operation requires adaptive real-time control procedures. An

important issue in network control is the adaptive distributed control of the re-

scheduling parameters in order to achieve optimum delay performance satisfying

the traffic constraints. To the best of our knowledge, no work has at the time of

this writing been reported in the literature concerning this problem. For mobile

operation another important question is that of network management, with aspects

such as the maintenance and updating of connectivity and routing information.

Some results are reported on this subject in (Garc85J.
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Appendix I

MULTIUSER INTERFERENCE

-It is our goal in this Appendix to obtain a qualitative description of the mul-

tiuser interference in "typical" spread spectrum systems. Due to the analytical

difficulty of the problem we shall not attempt to obtain absolute accuracy in the

results derived. We would like, however, that the model that we construct repre

sent well the relative changes, due to changes in system parameters such as received

power levels and length of the code waveforms, in the quantities of interest associ-

ated with the multiuser interference, such as bit errors and average length of the

successful packets. We would also like to avoid having to deal with the properties,

in particular the correlation structure, of specific sets of code waveforms. In or-

der to satisfy these requirements, we take the approach of imposing a probabilistic

structure on the set of all code waveforms and studying tbe stochastic properties

of the received signals derived therefrom. In this way we shall compute averages,

over that set, of the individual results concerning each of the code waveforms in

the set. (This is an idea similar to the one behind the "random coding" argument

of Information Theory.) The averages thus obtained can be taken as lower bounds

on the performance achievable with ad hoc selected code waveforms. In the model
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we formulate, we consider the chip amplitudes within each code waveform to form

an independent and identically distributed (i.i.d.) sequence, of length N,, of ±1

random variables, where N, is the given codeword length. By specifying the type

of correlation between chip amplitudes of different codewords of a same transmis-

sion we shall be able to model both the cases of bit-homogeneous and bit-changing

codes. Similarly, by specifying the type of correlation between the codewords as-

signed to different users we shall be able to model the uniform, receiver-directed,

and transmitter-assigned types of code assignments.

Section 1.1 describes the structure of the spread spectrum transmitter and re-

ceiver considered. Section 1.2 studies the components of the signal at the output of

the receiver due to the desired signal, the thermal noise, and single-user interference.

- Section 1.3 studies the multiuser interference, and derives a capture model. This

capture model includes expressions for the bit error probability and the probability

of packet loss.

1.1 System Structure

We consider in this Section a direct sequence binary phase shift keying system,

with K + 1 transwintters and K + 1 receivers, numbered 0,1,..., K. The k-th

transmitter sends a signal which is received by the k-th receiver, assumed to have

the knowledge of the codes used in the transmission. The k-th receiver has also

present at its input K other signals that interfere with the reception of the desired

signal. This reception is in addition corrupted by thermal noise that we can assume

added at the input of the receiver.

Transmitter structure and operation: We show in Figure I.la the structure of the

transmitter for the k-th signal. The transmitter comprises the source of data, the
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spread-spectrum modulator, and the BPSK modulator. The data source outputs a

stream of binary digits, assumed to be a sequence of i.i.d. random variables taking

the values +1 and -1 with equal probability, at a rate of 1/Tb digits/sec. We let

d I -... ,-,0,1,...} be the corresponding binary sequence. Each digit d(k)

is multiplied, in the spread-spectrum modulator, by a code waveform pj (t). The

code waveform pj()(t) is formed by a sequence of N, "chip" pulses, taking on the

values +1 and -1 with equal probability. Within a codeword, the chip amplitudes

are i.i.d. random variables taking on the values +1 and -1 with equal probability.

Without loss of generality, the chip pulses are considered to have a rectangular

shape. Letting IlT(t) denote a square r-second pulse of unit amplitude defined by

1 , if 0 < t <Tr,

t0, otherwise,

T, = T6/N, be the chip duration, and .ik) be the amplitude of the 1-th chip of

codeword p(k)(j), we have

N-1 - t ).

1=0

The output of the spread spectrum modulator thus produces the spread-spectrum

baseband signal F.j d4k) ,(k) (t - jT). This signal is then multiplied by a carrier

waveform to produce a BPSK signal. We denote by st(t) the unit-amplitude signal

at the output of the k-th transmitter.

The choice of the correlation structure between different codewords of a given

signal, or between the codewords of different signals, allows the modeling of the

different types of code assignments, as follows.

1. Bit-Homogeneous Codes: The random code sequences assigned to different bits

of a same transmission are identical. Formally, p ()(t) =- p(k)(t), for all j. In
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terms of the individual chip amplitudes, this condition means that , for all j,
(k) (k) (kN-1 is the i.i.d, chip sequence defining the code-

ajN,+i a, , where {a }1 1=o

(k) (in)
word. If signals S(t) and sn(t) use different codewords, then at and an are

independent, for 0 < 1, n < N - 1. If the signals use the same codeword, then

a1
k) = aM,- O,...,N. - 1.

2. Bit Changing Codes: The chip amplitudes assigned to different chips ak) and

ank) i $ k, of the same transmission are independent. Again, if signals sk(t)

and sn(t) use different codes, we take a~k) and a("') to be independent for all I

and n, and otherwise we set ask) = a rn)

Receiver structure and operation: The receiver is shown in Figure 1.lb. It comprises

a local oscillator, a local code generator, and a data detector. BPSK demodulation

is achieved by performing the product of the received signal with the local carrier,

the double-frequency components being removed by the ensuing integrator. The

despreading operation is performed by multiplying the resulting baseband spread

spectrum signal by a locally generated replica of the desired signal code sequence.

The product signal is then integrated over one bit duration. The output of the

integrator is the crosscorrelation, computed over a bit duration, between the input

signal and the local code waveform. This output is sampled at the bit boundaries,

and the sampled value is compared with a threshold, in order to determine the value

of the received data bit.

1.2 Receiver Output Signal

Without loss of generality, we focus on the reception of signal so(t) by the cor-

responding receiver. The receiver has at its input attenuated and delayed versions

AL-0t - rk) of the transmitted signals sk(t), k = 0, 1,..., K, as vell as a zero mean
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white Gaussian noise of two-sided power spectral density io/2. We take the time

delay of so(t) to be ro = 0, and assume the bit boundaries of the interfering signals

to be uniformaly distributed within the bit duration of the signal so(t). We also

assume that each receiver is in perfect code, carrier frequency, and carrier phase

synchronism with the signal it is supposed to receive. We let Ok designate the phase

of the carrier of signal St) at the input of the zeroth receiver. We take o "- 0,

and assume {0i}'K_1 to be a set of i.i.d. random variables uniformly distributed in

(-7r, 1r).

The receiver output is a linear functional of the input, and thus we can study

separately the components of the output signal correspinding to each one of the

input signals. Without loss of generality, we consider the output of the receiver at

time i = T, corresponding to the reception of bit d(0) of signal so(t).

1.2.1 Desired Signal

The output at t - Tb due to the desired signal is

VO (Tb) d0T Ao°O)2cos2( t) dPi.)( jTb))dt

Since the amplitude of the code waveforms is of unit absolute value, the above

expression becomes

vo(Tb) = T, 2& d(O ) cos2(wt) dt
A o +sin(2wTb)]

- A0 d(° ) I4
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having in the last expression neglected the terms of frequency 2W, since normally

wTb < 1. The output due to the desired signal is seen to be, as expected, an

attenuated version of the transmitted data bit d(0) .

1.2.2 Thermal Noise

The output signal due to the thermal noise is

vo(Tb) ---- j' 2 n,(t) p )(t) cos(wt)dt.

Since p(o)(t) only takes the values ±1, n(t) = p()(t) n(t) is also a white Gaussian

noise with the same power spectral density no/2. Thus vo(Tb) is a Gaussian random

- variable, with

E[vo(Tb)] = 0

and variance

var[vo(Tb)] E[vo(Tb) I = E [T T n(t) n(u) cos(wt) cos(wu)ddu

O [+ sin(2wTb) 1
Tb L 2wTbj

110

Tb'

having again neglected the double-frequency components.

1.2.3 Single Interfering Signal

We consider now the output signal due to a generic interfering signal r(t). For

notational simplicity, we shall remove all superscripts from the parameters associ-

ated with this signal, so that r(t) = Acos(wi + 0) . dipj (t - jT - r), where pj(t)
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a, ak

a 0  a2  ak.1 l ak+l aNc-1

d1 1 F1 1- -F do0

Fig. 1.2 Chip waveforms of interfering and local codes

is the j-th codeword and dij the ,j-th data bit of the interfering signal. We write

=" -- Tc + pTa, where k is an integer determined by the condition that 0 <_p < 1.

For simplicity, we shall consider only with the case 0 _< r <Tb (i.e., 0 < k < No- 1),

since the other cases are easily derived from this one. Thus bit d 0° ) of the desired

signal is overlapped by bits d- 1 and do of the interfering signal, with the boundary

between d-.. and do occurring during the k-th chip of codeword p~o°)(f) (Figure 1.2).

From Figure 1.2 it is easy to see that the output voltage due to the interfering
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signal is given by

1fT 0

vO(Tb)= f ' A djpi(t -jTb - r)p(0 )(t) [cos9 + cos(2w + 0)] dt

A (0)
- cosOf [d.lp.1(t +Tb -,r)+dopo(t -1 )]p()dt,

having again neglected components of frequency 2w. For notational simplicity, we

designate by {ak1}oj1, {bk}k-2Nc, and {bk}=04-1 the chip sequences forming the

codewords p(o)(t) of the desired signal, and p-i(t) and po(t) of the interfering signal,

respectively. Given the assumption of rectangular chip pulses, the integral defining

vo(Tb) becomes

-(F Nc-i tblkj
vo(Tb) = T1b A cos 0 d-1 a b-k-+ + do ai bF-,-I

I. 1=0 I=k+l

[k-I N - 1
+(1-p) d-1E at b-k+ +do E at bk

1=0 I=k

(I.1)

where we make the convention the a summation is to be taken as empty whenever

the lower limit exceeds the upper limit. Note that the value of vo(t) for r outside the

interval [0, Tb) can be obtained from the Equation (I.1) by substituting interfering

data bits d-1 and do by the interfering data bits which overlap bit 0 of the desired

signal.

In the following analysis, we will make use of the following

Lemma 1.3.1 Let X, Y, and Z be i.i.d. random variables, taking on the values +1

and -1 with probability 1/2, and C, and C2 be given constants taking either the

value +1 or -1. Then V = CIX Y and V2 = C2X Z are independent random

variables, taking on the values +1 or -1 with probability 1/2.
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The form of vo(Tb) depends on the type of dependence between the codewords

Po(O and pl(t) of the interfering signal, and codeword p(O) of the desired signal. We

first consider the case where the desired and the interfering signals use different code

sequences, modeled by taking the codes of the interfering signal to be independent

from those of the desired signal. We then consider the case where the code sequences

of the two signals are identical, for both the subcases of bit-changing and bit-

homogeneous code sequences.

1.2.3.1 Different Codes

According to the model of Section 1.2, the case of different code sequences is

handled by taking ak and bi to be independent random variables, for all values of k

and 1. Accordingly, and from Lemma 1.3.1, any two distinct terms inside the braces

in Equation (1.1) are independent, so that we can write

Nc-t Ne-t

v(Tb)- Acos(0 p N - X +(1 NE AF Y
TbI =0 . 1=0

where {XI} and {Y} are sets of i.i.d. random variables taking on the values +1 and

-1 with probability 1/2. By writing

vo(T) Acosa N-_ I-,N-I yVOT)= P E2j +")=0 1

and using the Central Limit Theorem we see that, for large N,, v0(T) is the weighted

sum of two independent approximately normal random variables, and is thus itself

approximately normal. Given 0 and p, we can thus approximate vo(Tb) by a normal

random variable with mean p = 0 and variance

oC2 = cos2 0
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However, and unlike a normal random variable, vo(Tb) is bounded (Ivo(Tb)l :_ A)

with probability 1. The nonzero probability mass associated with the tails of the

normal random variable outside the interval [-A, A] will cause the approximation

to be pessimistic, but becoming more accurate as a/A decreases, that is, as the

codeword length N increases.

It should be noted that, unconditioned on e and p, vo(Tb) is not normal, and

its distribution is difficult to compute. It is easy, however, to compute the two first

moments,

E[vo(Tb)I -0,

and

v-(T)] =-EI-v(b p,]) =-E +- 3 2 c"

The dependence between the values of the interference output voltage for dif-

ferent bits of a same transmission depends on the type of the code sequence. If

bit-homogeneous codes are used and no thermal noise is present, vo(n Tb) can only

take four distinct values over a given sample path, corresponding to the four dis-

tinct combinations of values of d- 1 and do. If bit-changing codes are used, then

vo(Tb), vo(2 T),..., are independent.

1.2.3.2 Identical Bit-Homogeneous Codes

In this case, ak = b-jN,+k, for all j integer, and k = 0,1,..., N - 1. Equation

(1.1) then becomes

[k Nc-11
vo(Tb)= KcAcosO p d_1 a aNc.-+- +do _,at a-t

+(Ios -d).[daap4.
/=0 i-k+l d al-

I=0 I~k
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The form of the interfering voltage depends now on the value of k.

(i) k = 0

We have

vo(Tb)-- --AcosO d- 1 aoa-l+do atat- + 1 p) do Nc
voT)-T6  {P I O~ +~j~ .- ~

I ~ ~~A cosB 0 cN,1

=Acos9(1-p)do+p Aco s

where {X1} is an i.i.d. sequence of binary equiprobable random variables. We

thus see that vo(Tb) has a deterministic component

E[vo(Tb) I k, p,8] = Acos0do(1 - p)

and a zero mean approximately normal component of variance

var[ vo(Tb) I k,p,1 = A2 cs 2 O P

(ii) k-Nc-1

Performing similar computations, one would arrive at the conclusion that vo(Tb)

has a deterministic component

E[vo(Tb) I k, p,6] = Acos d-.ip

and a zef.' mean approximately normal component of variance

E [V2 T )I k'P9] A2 cos B 2- v (1-p)2 "

(iii) I< k< N,- 2

In this case we have

vo(Tb) = Ac P9{P N - 0 - , 1
255 1=0
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and thus vo(Tb) is approximately normal, with mean

Evo(Tb) I k, p,O] =0

and variance

E [vg(Tb) I k, p,0 ] =Ac0 [ 2+ 2 )J

Cases (i)-(iii) deal only with the case where 0 < r < Tb. Due to the periodicity

of the codes involved, the results for r outside the range can be immediately obtained

from those derived above by shifting appropriately the indices of the interfering

data bits that overlap bit d(0) of the desired signal. We show in Figures 1.3 a and

1.3b, respectively, the deterministic component and the variance of the random

component of vo(Tb) as function of r. In Figure 1.3a we also show the bit amplitudes

that affect each of the code waveforms correlation peaks. These correlation peaks

correspond to the "vulnerable" periods mentioned in Section 2.3.4, such that if the

timing of the interfering signal is within them, a high value of the interfering voltage

results.

1.2.3.3 Identical Bit-Changing Codes

This situation is modeled by taking ak = bk for all k, with aL, aj independent

for k # j. As in the previous case, the behavior of vo(Tb) depends on k. Since the

derivations are similar, we limit ourselves to state the results.

(i) k = 0

The output vo(Tb) has a deterministic component

E[vo(Tb) I k, p,O] = Acosedo(1 - p)
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E[vo(Tb)]

A cos edi do -d. 1

-Tb 0 Tb Tb
Nc

(a)

var[vo(Tb)J

A2 cos 2 e//Nc

-Tb 0 Tb

(b)

Fig. 1.3 Mean and variance of interference for identical bit-homogeneous codes
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and a zero mean random component, with variance

E [,ov(T,) I k, p, 0] = cos p

Again, for large N,, we can take the random component to be approximately

normal.

(ii) k = -1

We have a situation similar to case (i), but now with

E[vo(Tb) I k, p,O] = Acos dop

and

E [v (Tb) A k, pJ - (1 - p)2 .

(iii) k q 0, k 0 -1

For k P'0 or k 6 -1, each interfering chip is independent of the chips of the

desired codeword that it overlaps, and we are thus in a situation similar to that

of independent codes. We have

E[vo(Tb) I k, p. 0] =0

and

E[vo(Tb) Ik, p,O]=A' c s O [p2 + Ip)2]Nc

We show in Figures 1.4a and 1.4b, respectively, the deterministic component and

the variance of the random component of vo(Tb) as function of r. As observed in

Section 2.3.4, the vulnerable period during which the interfering and desired codes

possess high correlation is limited to one chip time around r = 0.
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EIVO(Tb)1

do _Acos e

-Tb 0 T b Tb

(a)

var [vO(Tb)]

A2 cos2 el NC

.-Tb 0 Tb

(b)

Fig. 1.4 Mean and variance of interference for identical bit-changing codes

259



1.3 Multiuser Interference: Bit Errors and Packet Loss

We now consider a general situation where a desired signal so(t) is overlapped

by p signals using the same code sequence, denoted s(t),..., sp(t), and by q signals

using independent code sequences, denoted 3P+ ,..., sp+q(t). In addition, a zero

mean white gaussian noise of (two-sided) spectral density 110/2 is present. The

receiver is assumed to be in frequency, phase and code synchronism with the desired

signal. Signal sk(t), k = 1,. -,p+q, has differential carrier phase Ok, and differential

time delay rk, relative to the corresponding quantities of signal so(t).

The amplitude Ak, k = 0, .-. ,p + q, of the signals present, as well as 110, are
assumed to be known a priori, and{k , areasumet be p{= rk~klp r assumed to be independent

random variables, uniformly distributed in (-r, 7r) and (0, Tb), respectively. We

will consider in separate both the cases of bit-changing codes and bit-homogeneous

codes.

Let A be the vector of the signal amplitudes, and T and 0 be the vectors of

differential time delays and differential carrier phases, respectively, with respect

to signal so(i). Let also I(A, T, G) be the interference component of the receiver

output at time t = Tb, not including the thermal noise. We have

p+q
I(A,T,E) = E Ik(Ak,Tk, Bk)

kI=1

where Ik(Ak, Tk, Ok) is the interference due to signal 8k(t), and has the general form

given by Equation (1.1). For reasons of symmetry, the bit error probability does

not depend on which data bit is transmitted. Assume that desired data bit -1 is

transmitted, producing a component -AO at the receiver output. An error in the

reception of the data due to the thermal noise and multiuser interference will occur
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with probability

Pec(A, T, 6) - P(e (A, T, e) = P(-Ao + nw + I(A, T, e) > o) (1.2)

= P(nw + I(A, T, 0) > Ao).

where n. is the output component due to the thermal noise. This probability

depends on the statistics of the multiuser interference, which we now examine.

1.3.1 Bit-Changing Codes

For bit-changing codes, the difference between the type of interference due to

signals with the same codes as the desired signal and signals with different (inde-

pendent) codes resides in the existence, in the former case, of one single "vulnerable

period" of width double that of the chip duration T such that if the timing of an

interfering signal falls within this period, a large interference output results. For

typical values of codeword length of 100 chips/bit, and packet length of 1000 bits,

this duration represents a fraction of 2 x 10- 5 of the packet length, and will be

neglected. Thus we assume that both types of signals produce the same type of

interference. For the large typical values of N,, we assume each component of the

interference I(A, T, 6) to be Gaussian, with zero mean and variance

2 Ak cos e& [2 + (1 - Pk) 2].

With this assumption, I(A, T, 0) is itself Gaussian, with zero mean and variance

02-- 1 p+q- q +A cos2 9k,+(1 - pk) 2 1.
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To the code interference is also added the thermal noise interference n. which,

from Section 1.3.2, is Gaussian with zero mean and variance qo/Tb. Thus the total

interference voltage at the receiver output is Gaussian, with zero mean and variance

1 P+q 2
at= - + , j Al cos 2 ek [p1 + (1 - Pk)2].

T ek=1

The approximation of assuming a Gaussian distribution becomes more accurate as

r7o/Tb increases over a2, which happens either as the noise power increases or as

the codeword length increases. From Equation 1.2 we obtain for the probability of

error, conditioned on T and 0,

Pec(A, T, e) = 1 +q

+ -_+ O -P Pk)+( P
Tb NCklI kcos k+(

where Q(z) is defined by

Q(X 00 e -y2/2

-7J / dy.

The probability of bit error is then given by

Pe(A) = E[Pec(A, T, e)].

The computation of expectations of this type constitutes one of the central points

in the study of multiuser interference, about which a substantial body of work ex-

ists in the spread spectrum literature (e.g., [Yao77], [Purs77a], [Purs77b], [Purs82],

[Gera82]). Even with the simple forms of the distributions assumed for {Ek} and

{rk} this computation is difficult, and we shall not attempt it here. We will instead

consider a worst-case bound P,(A) for Pe(A), obtained by assuming perfect chip
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and carrier synchronism (i.e., ik = 0 and Ok = O, k = 1,..., p + q) at the receiver

between the interfering signals and the desired signal. Thus

APe (A) = Q --10 P+' " (1.3)

Tb Nk=.l

Letting (S/N)o designate the basic signal-to-noise ratio in the absence of multiuser

interference, (S/N)o - A2 Tb/io, and letting P be the received power of signal

Ss(t), we can equivalently write

...Pe(A)Q (-)o (1.4)p+q(.4

NcNk=1 )O

The consideration of random code waveforms and the approximation afforded

by the Central Limit Theorem led us to consider the multiuser interference to have

a Gaussian distribution. This approximation is ofter made when dealing with de-

terministic code waveforms, being referred to as the Gaussian interference approx-

imation. For some specific sets of code waveforms it has been shown to yield good

results when the number of interfering signals is large, the code lengths are large,

or the thermal noise power is high ([Yao77)). These conditions coincide with those

given here for the distribution of the interference signal I(A, T, 0) to be approxi-

mately normal.

In the model considered, in which coding is not present, a packet is successful

only if no bit errors occur. In the present ca.,, of bit-changing codes bit errors are

independent from bit to bit, and thus the probability of successful reception for a
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packet of length N is (1 - P *(A))N. In the continuous-time model considered in

this work, errors are assumed to form a Poisson point process with rate P,(A)/Tb.

1.3.2 Bit-Homogeneous Codes

As in the previous case, the behavior of the multiuser interference depends on the

relationship between the code sequences of the interfering and desired signals. The

computation of the conditional probability of bit error involves the computation of

the conditional probability of bit error Pet(A, T, 0) and of the expectation P,(A) =

E[Pec(A, T, 0)]. We again take the worst-case situation where the interfering signals

are in chip and carrier synchronism with the desired signal.

The interference due to the signals with different code sequences is taken to

be Gaussian, with zero mean and variance k- r=+ 1 A'- The interference due

to the signals si(t), ... , s,(t) with the same code sequence depends on the vector

T = {rk} of the differential time delays. If some Tk falls within any of the "vulner-

able" intervals UiTb - T,, jTb + T], for j integer, an output component Akd~k) will

result, where d(k) takes the value +1 or -1 with probability 1/2. For values of Ak

comparable to A0 , which will be the case of the situation to be considered later for

numerical study, we assume that any such component will give rise to a bit error

with probability 1/2. This is clearly a pessimistic assumption, since for more than

one such interfering signal, the probability of the sum of n,, and the terms of the

form Akd(k) exceeding A0 is less than 1/2. The assumption is also not clearly valid

in situations where some of the interfering signals have amplitudes much smaller

than the desired signal, in which case a more refined model should be used. If no

Tk falls within a "vulnerable period", the interference by signals 81(t), ... , SP(t) is

taken as Gaussian, as described in Section 1.3.2. In this case, the total interference
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is then Gaussian, with zero mean and variance

2 '10 1 p+q 2

Ck=1

to which corresponds a probability of error given by Equations (1.3) and (1.4).

In order to compute the probability of no bit errors, it is necessary to know the

correlation between errors in different bits. If some rk, k = 1,--- ,p, falls within a

vulnerable period, the resulting bit errors are highly correlated, and the loss of the

packet is assumed to result with probability 1. Otherwise, bit errors are assumed

to occur independently from bit to bit. This assumption is just an approximation,

since the multiuser interference is correlated from bit to bit. However, since thermal

- noise is added to it and the multiuser interference term becomes less important as

Nc increases, this approximation will be accurate for large Nc.

We shall thus assume the following model

(i) with probability 1 - (1 - -L)P a packet is lost due to interference within the

vulnerable period;

(ii) with probability (1 - -I)P no interference exists within the vulnerable pe-

riod, but bit errors occur independently from bit to bit with probability

P*(A); the bit errors are approximated by a Poisson point process with rate

P*(A)/T6.
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